A243926 Irregular triangular array of numerators of the positive rational numbers ordered as in Comments.
1, -2, 2, -1, 3, -2, 0, 4, -1, 1, 5, -6, -2, 1, 4, 6, -5, -4, -3, -1, 3, 3, 7, 7, -10, -3, -4, -6, -2, 2, 2, 8, 5, 10, 8, -7, -5, -4, -3, -1, 1, 5, 7, 5, 13, 7, 13, 9, -14, -14, -10, -6, -10, -4, -6, -2, 1, 3, 6, 8, 12, 12, 8, 18, 9, 16, 10, -13, -10, -8, -9
Offset: 1
Examples
First 7 rows of the array of rationals: 1/1 -2/1 ... 2/1 -1/1 ... 3/1 -2/3 ... 0/1 ... 4/1 -1/2 ... 1/3 ... 5/1 -6/1 ... -2/5 .. 1/2 ... 4/3 ... 6/1 -5/1 ... -4/1 .. -3/2 .. -1/3 .. 3/5 .. 3/2 .. 7/3 .. 7/1 The numerators, by rows: 1,-2,2,-1,3,-2,0,4,-1,1,5,-6,-2,1,4,6,-5,-4,-3,-1,3,3,7,7.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..2500
Programs
-
Mathematica
z = 13; g[1] = {1}; f1[x_] := x + 1; f2[x_] := -2/x; h[1] = g[1]; b[n_] := b[n] = DeleteDuplicates[Union[f1[g[n - 1]], f2[g[n - 1]]]]; h[n_] := h[n] = Union[h[n - 1], g[n - 1]]; g[n_] := g[n] = Complement [b[n], Intersection[b[n], h[n]]] u = Table[g[n], {n, 1, z}] v = Delete[Flatten[u], 12] Denominator[v] (* A243925 *) Numerator[v] (* A243926 *)
Comments