A243928 Irregular triangular array of denominators of the positive rational numbers ordered as in Comments.
1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 4, 1, 2, 2, 1, 1, 1, 5, 5, 4, 2, 1, 1, 1, 7, 7, 5, 5, 4, 2, 1, 1, 2, 1, 5, 3, 8, 7, 7, 5, 5, 5, 4, 2, 1, 1, 1, 1, 2, 4, 4, 7, 5, 3, 11, 3, 11, 3, 8, 4, 7, 7, 5, 5, 5, 4, 2, 1, 1, 1, 1, 2, 5, 4, 4, 8, 11, 8, 3, 4, 7, 13, 13, 5
Offset: 1
Examples
First 7 rows of the array of rationals: 1/1 -3/1 .. 2/1 -2/1 .. -3/2 .. 3/1 -1/1 .. -1/2 .. 3/2 ... 4/1 -3/4 .. 0/1 ... 1/2 ... 5/2 .. 5/1 .. 6/1 -6/1 .. -6/5 .. -3/5 .. 1/4 .. 7/2 .. 7/1 -12/1 . -5/1 .. -6/7 .. -3/7 . -1/5 . 2/5 . 5/4 . 9/2 . 8/1 The denominators, by rows: 1,1,1,1,2,1,1,2,2,1,4,1,2,2,1,1,1,5,5,4,2,1,1,1,7,7,5,5,4,2,1.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
z = 13; g[1] = {1}; f1[x_] := x + 1; f2[x_] := -3/x; h[1] = g[1]; b[n_] := b[n] = DeleteDuplicates[Union[f1[g[n - 1]], f2[g[n - 1]]]]; h[n_] := h[n] = Union[h[n - 1], g[n - 1]]; g[n_] := g[n] = Complement [b[n], Intersection[b[n], h[n]]] u = Table[g[n], {n, 1, z}] v = Delete[Flatten[u], 23] Denominator[v] (* A243928 *) Numerator[v] (* A243929 *)
Comments