This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A243929 #6 Jun 19 2014 11:18:56 %S A243929 1,-3,2,-2,-3,3,-1,-1,3,4,-3,0,1,5,5,6,-6,-6,-3,1,7,7,-12,-5,-6,-3,-1, %T A243929 2,5,9,8,-11,-15,-4,-12,-2,-3,1,4,3,4,7,9,11,9,15,-21,-10,-13,-21,-15, %U A243929 -15,-7,-4,-6,-1,3,1,5,3,8,11,8,9,12,13,13,10,16,-20 %N A243929 Irregular triangular array of numerators of the positive rational numbers ordered as in Comments. %C A243929 Decree that (row 1) = (1). For n >= 2, row n consists of numbers in increasing order generated as follows: x+1 for each x in row n-1 together with -3/x for each nonzero x in row n-1, where duplicates are deleted as they occur. The number of numbers in row n is A243930(n). Conjecture: every rational number occurs exactly once in the array. %H A243929 Clark Kimberling, <a href="/A243929/b243929.txt">Table of n, a(n) for n = 1..1000</a> %e A243929 First 7 rows of the array of rationals: %e A243929 1/1 %e A243929 -3/1 .. 2/1 %e A243929 -2/1 .. -3/2 .. 3/1 %e A243929 -1/1 .. -1/2 .. 3/2 ... 4/1 %e A243929 -3/4 .. 0/1 ... 1/2 ... 5/2 .. 5/1 .. 6/1 %e A243929 -6/1 .. -6/5 .. -3/5 .. 1/4 .. 7/2 .. 7/1 %e A243929 -12/1 . -5/1 .. -6/7 .. -3/7 . -1/5 . 2/5 . 5/4 . 9/2 . 8/1 %e A243929 The numerators, by rows: %e A243929 1,-3,2,-2,-3,3,-1,-1,3,4,-3,0,1,5,5,6,-6,6,-3,1,7,7,-12,-5,-6,-3,-1,2,5,9,8. %t A243929 z = 13; g[1] = {1}; f1[x_] := x + 1; f2[x_] := -3/x; h[1] = g[1]; %t A243929 b[n_] := b[n] = DeleteDuplicates[Union[f1[g[n - 1]], f2[g[n - 1]]]]; %t A243929 h[n_] := h[n] = Union[h[n - 1], g[n - 1]]; %t A243929 g[n_] := g[n] = Complement [b[n], Intersection[b[n], h[n]]] %t A243929 u = Table[g[n], {n, 1, z}] %t A243929 v = Delete[Flatten[u], 23] %t A243929 Denominator[v] (* A243928 *) %t A243929 Numerator[v] (* A243929 *) %Y A243929 Cf. A243928, A243930, A243925, A243712. %K A243929 easy,tabf,frac,sign %O A243929 1,2 %A A243929 _Clark Kimberling_, Jun 15 2014