cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243932 Positive integers with the same number of twin divisors as non-twin divisors.

Original entry on oeis.org

6, 8, 21, 27, 33, 35, 39, 40, 45, 51, 57, 69, 72, 75, 87, 93, 96, 105, 111, 123, 129, 141, 143, 159, 168, 177, 183, 189, 201, 213, 219, 237, 249, 252, 264, 267, 291, 297, 303, 309, 312, 321, 323, 327, 339, 381, 393, 399, 411, 417, 420, 429, 447, 453, 471, 483, 489, 501
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 15 2014

Keywords

Comments

A divisor m of n is twin if the positive values of m - 2 and/or m + 2 also divides n.
A divisor k of n is non-twin if the positive values of neither k - 2 nor k + 2 divide n.

Examples

			The divisors of 40 are 1, 2, 4, 5, 8, 10, 20, 40. Of these, 2, 4, 8, 10, are twin divisors and 1, 5, 20, 40 are non-twin divisors. These are the same number of twin divisors (4) as non-twin divisors (4), so 40 is in this sequence.
		

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Block[{d = Divisors@ n}, Length@ d == 2Length@ Select[d, MemberQ[d, # + 2] || MemberQ[d, # - 2] &]]; Select[ Range@ 520, fQ] (* Robert G. Wilson v, Jun 22 2014 *)
  • PARI
    isOK(n) = t=sumdiv(n, d, (d>2 && n%(d-2)==0) || (d<=n-2 && n%(d+2)==0)); if(t==numdiv(n)-t, 1, 0)
    s=[]; for(n=1, 600, if(isOK(n), s=concat(s, n))); s \\ Colin Barker, Jun 30 2014

Formula

A243865(a(n)) = A243917(a(n)).

Extensions

Missing term (168) inserted by Colin Barker, Jun 30 2014