This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A243954 #5 Jun 20 2014 17:48:33 %S A243954 1,1,2,3,-8,-95,-144,5299,51584,-263007,-11283200,-61279229, %T A243954 2321353728,49471727617,-217783810048,-25824369466125, %U A243954 -298783278792704,10591512134358721,400315590893961216,-536860171776183677,-362306852971970560000,-7292410691309793586719,227379942363338919903232 %N A243954 E.g.f.: A(x) = x/Series_Reversion(x*G(x)) where G(x) = Sum_{n>=0} n^n*x^n/n!. %C A243954 Compare to: exp(x) = x/Series_Reversion(x*W(x)) where W(x) = Sum_{n>=0} (n+1)^(n-1)*x^n/n!. %H A243954 Paul D. Hanna, <a href="/A243954/b243954.txt">Table of n, a(n) for n = 0..100</a> %F A243954 E.g.f. satisfies: A(x) = G(x/A(x)) such that A(x*G(x)) = G(x) = Sum_{n>=0} n^n*x^n/n!. %F A243954 E.g.f. A(x) satisfies: [x^n/n!] A(x)^(n+1)/(n+1) = n^n. %e A243954 G.f.: A(x) = 1 + x + 2*x^2/2! + 3*x^3/3! - 8*x^4/4! - 95*x^5/5! - 144*x^6/6! +... %e A243954 where %e A243954 A(x) = 1 + x/A(x) + 4*(x/A(x))^2/2! + 27*(x/A(x))^3/3! + 256*(x/A(x))^4/4! + 3125*(x/A(x))^5/5! +...+ n^n*(x/A(x))^n/n! +... %e A243954 If we form a table of coefficients of x^k/k! in A(x)^n, like so: %e A243954 [1, 1, 2, 3, -8, -95, -144, 5299, 51584, ...]; %e A243954 [1, 2, 6, 18, 32, -150, -1728, -1078, 144384, ...]; %e A243954 [1, 3, 12, 51, 192, 375, -2592, -29841, 12288, ...]; %e A243954 [1, 4, 20, 108, 568, 2500, 5184, -48020, -557056, ...]; %e A243954 [1, 5, 30, 195, 1280, 7845, 38880, 84035, -983040, ...]; %e A243954 [1, 6, 42, 318, 2472, 18750, 129456, 705894, 1572864, ...]; %e A243954 [1, 7, 56, 483, 4312, 38395, 326592, 2485567, 14680064, ...]; %e A243954 [1, 8, 72, 696, 6992, 70920, 704448, 6588344, 54442368, ...]; %e A243954 [1, 9, 90, 963, 10728, 121545, 1368144, 14890995, 150994944, ...]; ... %e A243954 then the main diagonal equals (k+1)*k^k for k>=0. %o A243954 (PARI) {a(n)=n!*polcoeff(x/serreverse(x*sum(m=0, n+1, m^m*x^m/m!)+x^2*O(x^n)), n)} %o A243954 for(n=0,25,print1(a(n),", ")) %K A243954 sign %O A243954 0,3 %A A243954 _Paul D. Hanna_, Jun 20 2014