A243961 Decimal expansion of the expectation of the maximum of a size 8 sample from a normal (0,1) distribution.
1, 4, 2, 3, 6, 0, 0, 3, 0, 6, 0, 4, 5, 2, 7, 7, 7, 5, 3, 0, 7, 8, 3, 2, 4, 6, 4, 9, 3, 0, 6, 2, 5, 7, 2, 5, 3, 0, 8, 6, 7, 2, 5, 2, 7, 0, 6, 9, 4, 8, 3, 1, 4, 3, 2, 2, 2, 5, 9, 1, 7, 5, 5, 4, 7, 8, 3, 5, 5, 5, 1, 2, 6, 8, 5, 2, 8, 1, 4, 2, 1, 6, 4, 2, 8, 9, 8, 8, 6, 5, 9, 7, 6, 9, 2, 7, 5, 5, 3, 7
Offset: 1
Examples
1.423600306045277753078324649306257253...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.16 Extreme value constants, p. 365.
Crossrefs
Programs
-
Mathematica
digits = 100; m0 = 5; dm = 5; f[x_] := 1/ Sqrt[2*Pi]*Exp[-x^2/2]; F[x_] := 1/2*Erf[x/Sqrt[2]] + 1/2; Clear[mu8]; mu8[m_] := mu8[m] = 8*NIntegrate[x*F[x]^7*f[x], {x , -m , m}, WorkingPrecision -> digits+5, MaxRecursion -> 20]; mu8[m0]; mu8[m = m0 + dm]; While[RealDigits[mu8[m]] != RealDigits[mu8[m - dm]], Print["m = ", m]; m = m + dm]; RealDigits[mu8[m], 10, digits] // First
Formula
integral_(-infinity..infinity) 8*x*F(x)^7*f(x) dx, where f(x) is the normal (0,1) density and F(x) its cumulative distribution.
Comments