This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A243963 #18 Dec 25 2023 17:20:14 %S A243963 0,0,2,3,-8,-25,96,427,-2176,-12465,79360,555731,-4245504,-35135945, %T A243963 313155584,2990414715,-30460116992,-329655706465,3777576173568, %U A243963 45692713833379,-581777702256640,-7777794952988025,108932957168730112,1595024111042171723,-24370173276164456448 %N A243963 a(n) = n*4^n*(-Z(1-n, 1/4)/2 + Z(1-n, 3/4)/2 - Z(1-n, 1)*(1 - 2^(-n))) for n > 0 and a(0) = 0, where Z(n, c) is the Hurwitz zeta function. %C A243963 Previous name was: 0 followed by -(n+1)*A163747(n). %C A243963 Difference table of a(n): %C A243963 0, 0, 2, 3, -8, -25,... %C A243963 0, 2, 1, -11, -17, 121,... %C A243963 2, -1, -12, -6, 138, 210,... %C A243963 -3, -11, 6, 144, 72, -3144,... %C A243963 -8, 17, 138, -72, -3216, -1608,... %C A243963 25, 121, -210, -3144, 1608,... %C A243963 a(n) is an autosequence of second kind. Its inverse binomial transform is the signed sequence. Its main diagonal is the first upper diagonal multiplied by 2. %F A243963 a(n) = 0, 0, followed by (period 4: repeat 1, 1, -1, -1)*A065619(n+2). %F A243963 a(2n) = (-1)^(n+1)A009752(n). a(2n+1) = (-1)^n*A009843(n+1). %p A243963 a := n -> `if`(n=0, 0, n*4^n*(-Zeta(0, 1-n, 1/4)/2 + Zeta(0, 1-n, 3/4)/2 + Zeta(1-n)*(2^(-n)-1))): seq(a(n), n=0..24); # _Peter Luschny_, Jul 21 2020 %t A243963 a[0] = 0; a[n_] := -n*SeriesCoefficient[(2*E^x*(1 - E^x))/(1 + E^(2*x)), {x, 0, n-1}]*(n-1)!; Table[a[n], {n, 0, 21}] (* _Jean-François Alcover_, Jun 17 2014 *) %Y A243963 Cf. A132049, A065619. %K A243963 sign %O A243963 0,3 %A A243963 _Paul Curtz_, Jun 16 2014 %E A243963 New name by _Peter Luschny_, Jul 21 2020