cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243978 Triangle T(n,k), n>=0, 0<=k<=n, read by rows: T(n,k) is the number of partitions of n where the minimal multiplicity of any part is k.

This page as a plain text file.
%I A243978 #39 Jan 08 2015 06:01:26
%S A243978 1,0,1,0,1,1,0,2,0,1,0,3,1,0,1,0,6,0,0,0,1,0,7,2,1,0,0,1,0,13,1,0,0,0,
%T A243978 0,1,0,16,4,0,1,0,0,0,1,0,25,2,2,0,0,0,0,0,1,0,33,6,1,0,1,0,0,0,0,1,0,
%U A243978 49,4,2,0,0,0,0,0,0,0,1,0,61,9,3,2,0,1,0,0,0,0,0,1,0,90,6,3,1,0,0,0,0,0,0,0,0,1,0,113,16,2,2,0,0,1,0,0,0,0,0,0,1,0,156,9,7,1,2,0,0,0,0,0,0,0,0,0,1
%N A243978 Triangle T(n,k), n>=0, 0<=k<=n, read by rows: T(n,k) is the number of partitions of n where the minimal multiplicity of any part is k.
%C A243978 T(0,0) = 1 by convention.
%C A243978 Columns k=0-10 give: A000007, A183558, A244515, A244516, A244517, A244518, A245037, A245038, A245039, A245040, A245041.
%C A243978 Row sums are A000041.
%H A243978 Joerg Arndt and Alois P. Heinz, <a href="/A243978/b243978.txt">Table of n, a(n) for n = 0..10010</a> (rows 0..140, flattened)
%e A243978 Triangle starts:
%e A243978 00:  1;
%e A243978 01:  0,   1;
%e A243978 02:  0,   1,  1;
%e A243978 03:  0,   2,  0, 1;
%e A243978 04:  0,   3,  1, 0, 1;
%e A243978 05:  0,   6,  0, 0, 0, 1;
%e A243978 06:  0,   7,  2, 1, 0, 0, 1;
%e A243978 07:  0,  13,  1, 0, 0, 0, 0, 1;
%e A243978 08:  0,  16,  4, 0, 1, 0, 0, 0, 1;
%e A243978 09:  0,  25,  2, 2, 0, 0, 0, 0, 0, 1;
%e A243978 10:  0,  33,  6, 1, 0, 1, 0, 0, 0, 0, 1;
%e A243978 11:  0,  49,  4, 2, 0, 0, 0, 0, 0, 0, 0, 1;
%e A243978 12:  0,  61,  9, 3, 2, 0, 1, 0, 0, 0, 0, 0, 1;
%e A243978 13:  0,  90,  6, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1;
%e A243978 14:  0, 113, 16, 2, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1;
%e A243978 15:  0, 156,  9, 7, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
%e A243978 16:  0, 198, 23, 3, 4, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1;
%e A243978 17:  0, 269, 18, 5, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
%e A243978 18:  0, 334, 34, 9, 3, 1, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1;
%e A243978 19:  0, 448, 27, 8, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
%e A243978 20:  0, 556, 51, 7, 6, 3, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
%e A243978 ...
%e A243978 The A000041(9) = 30 partitions of 9 with the least multiplicities of any part are:
%e A243978 01:  [ 1 1 1 1 1 1 1 1 1 ]   9
%e A243978 02:  [ 1 1 1 1 1 1 1 2 ]   1
%e A243978 03:  [ 1 1 1 1 1 1 3 ]   1
%e A243978 04:  [ 1 1 1 1 1 2 2 ]   2
%e A243978 05:  [ 1 1 1 1 1 4 ]   1
%e A243978 06:  [ 1 1 1 1 2 3 ]   1
%e A243978 07:  [ 1 1 1 1 5 ]   1
%e A243978 08:  [ 1 1 1 2 2 2 ]   3
%e A243978 09:  [ 1 1 1 2 4 ]   1
%e A243978 10:  [ 1 1 1 3 3 ]   2
%e A243978 11:  [ 1 1 1 6 ]   1
%e A243978 12:  [ 1 1 2 2 3 ]   1
%e A243978 13:  [ 1 1 2 5 ]   1
%e A243978 14:  [ 1 1 3 4 ]   1
%e A243978 15:  [ 1 1 7 ]   1
%e A243978 16:  [ 1 2 2 2 2 ]   1
%e A243978 17:  [ 1 2 2 4 ]   1
%e A243978 18:  [ 1 2 3 3 ]   1
%e A243978 19:  [ 1 2 6 ]   1
%e A243978 20:  [ 1 3 5 ]   1
%e A243978 21:  [ 1 4 4 ]   1
%e A243978 22:  [ 1 8 ]   1
%e A243978 23:  [ 2 2 2 3 ]   1
%e A243978 24:  [ 2 2 5 ]   1
%e A243978 25:  [ 2 3 4 ]   1
%e A243978 26:  [ 2 7 ]   1
%e A243978 27:  [ 3 3 3 ]   3
%e A243978 28:  [ 3 6 ]   1
%e A243978 29:  [ 4 5 ]   1
%e A243978 30:  [ 9 ]   1
%e A243978 Therefore row n=9 is [0, 25, 2, 2, 0, 0, 0, 0, 0, 1].
%p A243978 b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
%p A243978       b(n, i-1, k) +add(b(n-i*j, i-1, k), j=max(1, k)..n/i)))
%p A243978     end:
%p A243978 T:= (n, k)-> b(n$2, k) -`if`(n=0 and k=0, 0, b(n$2, k+1)):
%p A243978 seq(seq(T(n, k), k=0..n), n=0..14);
%t A243978 b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i<1, 0, b[n, i-1, k] + Sum[b[n-i*j, i-1, k], {j, Max[1, k], n/i}]]]; T[n_, k_] := b[n, n, k] - If[n == 0 && k == 0, 0, b[n, n, k+1]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 14}] // Flatten (* _Jean-François Alcover_, Jan 08 2015, translated from Maple *)
%Y A243978 Cf. A183568, A242451 (the same for compositions).
%Y A243978 Cf. A091602 (partitions by max multiplicity of any part).
%K A243978 nonn,tabl
%O A243978 0,8
%A A243978 _Joerg Arndt_ and _Alois P. Heinz_, Jun 28 2014