This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A243978 #39 Jan 08 2015 06:01:26 %S A243978 1,0,1,0,1,1,0,2,0,1,0,3,1,0,1,0,6,0,0,0,1,0,7,2,1,0,0,1,0,13,1,0,0,0, %T A243978 0,1,0,16,4,0,1,0,0,0,1,0,25,2,2,0,0,0,0,0,1,0,33,6,1,0,1,0,0,0,0,1,0, %U A243978 49,4,2,0,0,0,0,0,0,0,1,0,61,9,3,2,0,1,0,0,0,0,0,1,0,90,6,3,1,0,0,0,0,0,0,0,0,1,0,113,16,2,2,0,0,1,0,0,0,0,0,0,1,0,156,9,7,1,2,0,0,0,0,0,0,0,0,0,1 %N A243978 Triangle T(n,k), n>=0, 0<=k<=n, read by rows: T(n,k) is the number of partitions of n where the minimal multiplicity of any part is k. %C A243978 T(0,0) = 1 by convention. %C A243978 Columns k=0-10 give: A000007, A183558, A244515, A244516, A244517, A244518, A245037, A245038, A245039, A245040, A245041. %C A243978 Row sums are A000041. %H A243978 Joerg Arndt and Alois P. Heinz, <a href="/A243978/b243978.txt">Table of n, a(n) for n = 0..10010</a> (rows 0..140, flattened) %e A243978 Triangle starts: %e A243978 00: 1; %e A243978 01: 0, 1; %e A243978 02: 0, 1, 1; %e A243978 03: 0, 2, 0, 1; %e A243978 04: 0, 3, 1, 0, 1; %e A243978 05: 0, 6, 0, 0, 0, 1; %e A243978 06: 0, 7, 2, 1, 0, 0, 1; %e A243978 07: 0, 13, 1, 0, 0, 0, 0, 1; %e A243978 08: 0, 16, 4, 0, 1, 0, 0, 0, 1; %e A243978 09: 0, 25, 2, 2, 0, 0, 0, 0, 0, 1; %e A243978 10: 0, 33, 6, 1, 0, 1, 0, 0, 0, 0, 1; %e A243978 11: 0, 49, 4, 2, 0, 0, 0, 0, 0, 0, 0, 1; %e A243978 12: 0, 61, 9, 3, 2, 0, 1, 0, 0, 0, 0, 0, 1; %e A243978 13: 0, 90, 6, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1; %e A243978 14: 0, 113, 16, 2, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1; %e A243978 15: 0, 156, 9, 7, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; %e A243978 16: 0, 198, 23, 3, 4, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1; %e A243978 17: 0, 269, 18, 5, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; %e A243978 18: 0, 334, 34, 9, 3, 1, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1; %e A243978 19: 0, 448, 27, 8, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; %e A243978 20: 0, 556, 51, 7, 6, 3, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; %e A243978 ... %e A243978 The A000041(9) = 30 partitions of 9 with the least multiplicities of any part are: %e A243978 01: [ 1 1 1 1 1 1 1 1 1 ] 9 %e A243978 02: [ 1 1 1 1 1 1 1 2 ] 1 %e A243978 03: [ 1 1 1 1 1 1 3 ] 1 %e A243978 04: [ 1 1 1 1 1 2 2 ] 2 %e A243978 05: [ 1 1 1 1 1 4 ] 1 %e A243978 06: [ 1 1 1 1 2 3 ] 1 %e A243978 07: [ 1 1 1 1 5 ] 1 %e A243978 08: [ 1 1 1 2 2 2 ] 3 %e A243978 09: [ 1 1 1 2 4 ] 1 %e A243978 10: [ 1 1 1 3 3 ] 2 %e A243978 11: [ 1 1 1 6 ] 1 %e A243978 12: [ 1 1 2 2 3 ] 1 %e A243978 13: [ 1 1 2 5 ] 1 %e A243978 14: [ 1 1 3 4 ] 1 %e A243978 15: [ 1 1 7 ] 1 %e A243978 16: [ 1 2 2 2 2 ] 1 %e A243978 17: [ 1 2 2 4 ] 1 %e A243978 18: [ 1 2 3 3 ] 1 %e A243978 19: [ 1 2 6 ] 1 %e A243978 20: [ 1 3 5 ] 1 %e A243978 21: [ 1 4 4 ] 1 %e A243978 22: [ 1 8 ] 1 %e A243978 23: [ 2 2 2 3 ] 1 %e A243978 24: [ 2 2 5 ] 1 %e A243978 25: [ 2 3 4 ] 1 %e A243978 26: [ 2 7 ] 1 %e A243978 27: [ 3 3 3 ] 3 %e A243978 28: [ 3 6 ] 1 %e A243978 29: [ 4 5 ] 1 %e A243978 30: [ 9 ] 1 %e A243978 Therefore row n=9 is [0, 25, 2, 2, 0, 0, 0, 0, 0, 1]. %p A243978 b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, %p A243978 b(n, i-1, k) +add(b(n-i*j, i-1, k), j=max(1, k)..n/i))) %p A243978 end: %p A243978 T:= (n, k)-> b(n$2, k) -`if`(n=0 and k=0, 0, b(n$2, k+1)): %p A243978 seq(seq(T(n, k), k=0..n), n=0..14); %t A243978 b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i<1, 0, b[n, i-1, k] + Sum[b[n-i*j, i-1, k], {j, Max[1, k], n/i}]]]; T[n_, k_] := b[n, n, k] - If[n == 0 && k == 0, 0, b[n, n, k+1]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 14}] // Flatten (* _Jean-François Alcover_, Jan 08 2015, translated from Maple *) %Y A243978 Cf. A183568, A242451 (the same for compositions). %Y A243978 Cf. A091602 (partitions by max multiplicity of any part). %K A243978 nonn,tabl %O A243978 0,8 %A A243978 _Joerg Arndt_ and _Alois P. Heinz_, Jun 28 2014