A243984 Sum of non-twin divisors of n.
1, 3, 0, 1, 6, 8, 8, 9, 9, 18, 12, 12, 14, 24, 15, 25, 18, 35, 20, 36, 28, 36, 24, 36, 31, 42, 36, 50, 30, 63, 32, 57, 44, 54, 36, 75, 38, 60, 52, 66, 42, 92, 44, 78, 69, 72, 48, 100, 57, 93, 68, 92, 54, 116, 72, 114, 76, 90, 60, 125, 62, 96, 84, 121, 84, 140, 68, 120
Offset: 1
Examples
The divisors of 40 are 1, 2, 4, 5, 8, 10, 20, 40. Of these, 1, 5, 20, 40 are non-twin divisors. So a(40) = the sum of these divisors, which is 66.
Links
- Jens Kruse Andersen, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(n) local d; d:= numtheory[divisors](n); convert(d minus map(`+`,d,2) minus map(`+`,d,-2),`+`) end proc: map(f, [$1..100]); # Robert Israel, Aug 17 2014
-
Mathematica
a243984[n_Integer] := Total[Select[Divisors[n], If[And[# <= 2 || Divisible[n, # - 2] == False, Divisible[n, # + 2] == False], True, False] &]]; a243984 /@ Range[68] (* Michael De Vlieger, Aug 17 2014 *)
-
PARI
a(n) = s=0; fordiv(n, d, if(!((d>2 && n%(d-2)==0) || (d<=n-2 && n%(d+2)==0)), s+=d)); s for(n=1, 200, print1(a(n), ", ")) \\ Colin Barker, Jun 29 2014
Comments