cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243995 Fixed points of the function a(n) = phi(sigma(n) - phi(n) - d(n)), where phi(n) is the Euler totient function, sigma(n) the sum of divisors of n and d(n) the number of divisors of n.

This page as a plain text file.
%I A243995 #18 Jan 27 2019 05:45:50
%S A243995 1,18,96,560,720,1056,1760,2000,3264,7392,30960,50800,172080,173440,
%T A243995 9561600,13304064,195522560,1017856448,1026021024,1568010240,
%U A243995 2817884160
%N A243995 Fixed points of the function a(n) = phi(sigma(n) - phi(n) - d(n)), where phi(n) is the Euler totient function, sigma(n) the sum of divisors of n and d(n) the number of divisors of n.
%C A243995 a(22) > 10^10. - _Amiram Eldar_, Jan 27 2019
%e A243995 sigma(96) = 252, phi(96) = 32, d(96) = 12 and phi(252 - 32 - 12) = 96.
%p A243995 with(numtheory): P:=proc(q) local n;
%p A243995 for n from 1 to q do
%p A243995 if phi(sigma(n)-phi(n)-tau(n))=n then print(n);
%p A243995 fi; od; end: P(10^10);
%t A243995 Select[Range[10^4], EulerPhi[DivisorSigma[1, #] - EulerPhi[#] - DivisorSigma[0, #]] == # &] (* _Alonso del Arte_, Jun 18 2014 *)
%o A243995 (PARI) isok(n) = (spd = sigma(n) - eulerphi(n) - numdiv(n)) && (eulerphi(spd) == n); \\ _Michel Marcus_, Jun 18 2014
%Y A243995 Cf. A000005, A000010, A000203, A077092.
%K A243995 nonn,more
%O A243995 1,2
%A A243995 _Paolo P. Lava_, Jun 18 2014
%E A243995 a(15)-a(16) from _Jens Kruse Andersen_, Jul 23 2014
%E A243995 a(17)-a(21) from _Amiram Eldar_, Jan 27 2019