This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A243998 #17 Apr 30 2022 12:57:00 %S A243998 1,1,2,0,5,1,11,2,1,33,7,1,4,90,30,7,1,11,245,142,24,6,1,29,680,570, %T A243998 121,24,5,1,81,1884,2176,578,112,25,5,1,220,5265,7935,2649,580,116,25, %U A243998 5,1,608,14747,28022,11827,2825,602,124,25,5,1 %N A243998 Number T(n,k) of Dyck paths of semilength n with exactly k (possibly overlapping) occurrences of some of the consecutive patterns of Dyck paths of semilength 3; triangle T(n,k), n>=0, 0<=k<=max(0,n-2), read by rows. %C A243998 The consecutive patterns 101010, 101100, 110010, 110100, 111000 are counted. Here 1=Up=(1,1), 0=Down=(1,-1). %H A243998 Alois P. Heinz, <a href="/A243998/b243998.txt">Rows n = 0..142, flattened</a> %e A243998 T(3,1) = 5: 101010, 101100, 110010, 110100, 111000. %e A243998 T(4,0) = 1: 11001100. %e A243998 T(4,2) = 2: 10101010, 10110010. %e A243998 T(5,0) = 1: 1110011000. %e A243998 T(6,3) = 7: 101010101100, 101010110010, 101100101010, 101100101100, 110010101010, 110010110010, 110101010100. %e A243998 Triangle T(n,k) begins: %e A243998 : 0 : 1; %e A243998 : 1 : 1; %e A243998 : 2 : 2; %e A243998 : 3 : 0, 5; %e A243998 : 4 : 1, 11, 2; %e A243998 : 5 : 1, 33, 7, 1; %e A243998 : 6 : 4, 90, 30, 7, 1; %e A243998 : 7 : 11, 245, 142, 24, 6, 1; %e A243998 : 8 : 29, 680, 570, 121, 24, 5, 1; %e A243998 : 9 : 81, 1884, 2176, 578, 112, 25, 5, 1; %e A243998 : 10 : 220, 5265, 7935, 2649, 580, 116, 25, 5, 1; %p A243998 b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0, %p A243998 `if`(x=0, 1, expand(add(b(x-1, y-1+2*j, irem(2*t+j, 32))* %p A243998 `if`(2*t+j in {42, 44, 50, 52, 56}, z, 1), j=0..1)))) %p A243998 end: %p A243998 T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 0)): %p A243998 seq(T(n), n=0..14); %t A243998 b[x_, y_, t_] := b[x, y, t] = If[y < 0 || y > x, 0, %t A243998 If[x == 0, 1, Expand[Sum[b[x-1, y-1 + 2j, Mod[2t+j, 32]]* %t A243998 Switch[2t+j, 42|44|50|52|56, z, _, 1], {j, 0, 1}]]]]; %t A243998 T[n_] := CoefficientList[b[2n, 0, 0], z]; %t A243998 Table[T[n], {n, 0, 14}] // Flatten (* _Jean-François Alcover_, Apr 30 2022, after _Alois P. Heinz_ *) %Y A243998 Column k=0 gives A243986. %Y A243998 Row sums give A000108. %Y A243998 Cf. A014486, A063171, A243966. %K A243998 nonn,tabf %O A243998 0,3 %A A243998 _Alois P. Heinz_, Jun 17 2014