A244006 Triangle read by rows, q-multinomial coefficient generalization of 3-dimensional lattice paths from the origin to (m,m,m).
1, 1, 2, 2, 1, 1, 2, 5, 7, 11, 12, 14, 12, 11, 7, 5, 2, 1, 1, 2, 5, 10, 17, 27, 41, 56, 74, 93, 110, 125, 137, 142, 142, 137, 125, 110, 93, 74, 56, 41, 27, 17, 10, 5, 2, 1, 1, 2, 5, 10, 20, 33, 56, 86, 131, 186, 262, 350, 463, 586, 733, 885, 1056, 1219, 1391, 1542, 1689, 1799, 1894, 1942, 1968, 1942, 1894, 1799, 1689, 1542, 1391, 1219, 1056, 885, 733, 586, 463, 350, 262, 186, 131, 86, 56, 33, 20, 10, 5, 2, 1
Offset: 0
Examples
Triangle begins: 1; 1, 2, 2, 1; 1, 2, 5, 7, 11, 12, 14, 12, 11, 7, 5, 2, 1;
References
- D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; page 85-86.
Links
- Graham H. Hawkes, Table of n, a(n) for n = 0..427
Crossrefs
Cf. Row sums A006480.
Formula
G.f. for row m: (Product_{i=1..3*m} (1-q^i))/(Product_{j=1..m} (1-q^j))^3.
Comments