cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244012 Numerators of rational approximations to sqrt(7) obtained from Newton's method.

This page as a plain text file.
%I A244012 #11 Mar 04 2019 21:11:52
%S A244012 2,11,233,108497,23543191457,1108563727961872518977,
%T A244012 2457827077905448997994482872789298261401217,
%U A244012 12081827889770476116093110581355561229584727594431650162181251776430351279198649072897
%N A244012 Numerators of rational approximations to sqrt(7) obtained from Newton's method.
%H A244012 R. Parimala, <a href="https://doi.org/10.1090/S0273-0979-2014-01443-0">A Hasse principle for quadratic forms over function fields</a>, Bull. Amer. Math. Soc. (N.S.) 51 (2014), no. 3, 447--461. MR3196794.
%e A244012 2, 11/4, 233/88, 108497/41008, 23543191457/8898489952, ...
%p A244012 N:=7;
%p A244012 s:=[floor(sqrt(N))];
%p A244012 M:=8;
%p A244012 for n from 1 to M do
%p A244012 x:=s[n];
%p A244012 h:=(N-x^2)/(2*x);
%p A244012 s:=[op(s),x+h]; od:
%p A244012 lprint(s);
%p A244012 s1:=map(numer,s);
%p A244012 s2:=map(denom,s);
%Y A244012 Cf. A244013 (denominators).
%Y A244012 The analogs for sqrt(k), k=2,3,5,6,7 are: A001601/A051009, A002812/A071579, A081459/A081460, A244014/A244015, A244012/A244013.
%K A244012 nonn,frac
%O A244012 0,1
%A A244012 _N. J. A. Sloane_, Jun 18 2014