cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244014 Numerators of rational approximations to sqrt(6) obtained from Newton's method.

This page as a plain text file.
%I A244014 #9 Jun 19 2014 17:19:47
%S A244014 2,5,49,4801,46099201,4250272665676801,
%T A244014 36129635465198759610694779187201,
%U A244014 2610701117696295981568349760414651575095962187244375364404428801
%N A244014 Numerators of rational approximations to sqrt(6) obtained from Newton's method.
%e A244014 2, 5/2, 49/20, 4801/1960, 46099201/18819920, ...
%p A244014 N:=6;
%p A244014 s:=[floor(sqrt(N))];
%p A244014 M:=8;
%p A244014 for n from 1 to M do
%p A244014 x:=s[n];
%p A244014 h:=(N-x^2)/(2*x);
%p A244014 s:=[op(s),x+h]; od:
%p A244014 lprint(s);
%p A244014 s1:=map(numer,s);
%p A244014 s2:=map(denom,s);
%Y A244014 Cf. A244015, A084765.
%Y A244014 The analogs for sqrt(k), k=2,3,5,6,7 are: A001601/A051009, A002812/A071579, A081459/A081460, A244014/A244015, A244012/A244013.
%K A244014 nonn,frac
%O A244014 0,1
%A A244014 _N. J. A. Sloane_, Jun 18 2014