cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244015 Denominators of rational approximations to sqrt(6) obtained from Newton's method.

This page as a plain text file.
%I A244015 #13 Sep 08 2022 08:46:08
%S A244015 1,2,20,1960,18819920,1735166549767840,
%T A244015 14749861913749949808286047759680,
%U A244015 1065814268211609269094400465471990022332221793124358274759711360
%N A244015 Denominators of rational approximations to sqrt(6) obtained from Newton's method.
%e A244015 2, 5/2, 49/20, 4801/1960, 46099201/18819920, ...
%p A244015 N:=6;
%p A244015 s:=[floor(sqrt(N))];
%p A244015 M:=8;
%p A244015 for n from 1 to M do
%p A244015 x:=s[n];
%p A244015 h:=(N-x^2)/(2*x);
%p A244015 s:=[op(s),x+h]; od:
%p A244015 lprint(s);
%p A244015 s1:=map(numer,s);
%p A244015 s2:=map(denom,s);
%o A244015 (Magma) m:=9; f:=[n eq 1 select 2 else (Self(n-1)+6/Self(n-1))/2: n in [1..m]]; [Denominator(f[n]): n in [1..m]]; // _Vincenzo Librandi_, Jan 12 2016
%Y A244015 Cf. A244014 (numerators).
%Y A244015 The analogs for sqrt(k), k=2,3,5,6,7 are: A001601/A051009, A002812/A071579, A081459/A081460, A244014/A244015, A244012/A244013.
%K A244015 nonn,frac
%O A244015 0,2
%A A244015 _N. J. A. Sloane_, Jun 18 2014