This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244015 #13 Sep 08 2022 08:46:08 %S A244015 1,2,20,1960,18819920,1735166549767840, %T A244015 14749861913749949808286047759680, %U A244015 1065814268211609269094400465471990022332221793124358274759711360 %N A244015 Denominators of rational approximations to sqrt(6) obtained from Newton's method. %e A244015 2, 5/2, 49/20, 4801/1960, 46099201/18819920, ... %p A244015 N:=6; %p A244015 s:=[floor(sqrt(N))]; %p A244015 M:=8; %p A244015 for n from 1 to M do %p A244015 x:=s[n]; %p A244015 h:=(N-x^2)/(2*x); %p A244015 s:=[op(s),x+h]; od: %p A244015 lprint(s); %p A244015 s1:=map(numer,s); %p A244015 s2:=map(denom,s); %o A244015 (Magma) m:=9; f:=[n eq 1 select 2 else (Self(n-1)+6/Self(n-1))/2: n in [1..m]]; [Denominator(f[n]): n in [1..m]]; // _Vincenzo Librandi_, Jan 12 2016 %Y A244015 Cf. A244014 (numerators). %Y A244015 The analogs for sqrt(k), k=2,3,5,6,7 are: A001601/A051009, A002812/A071579, A081459/A081460, A244014/A244015, A244012/A244013. %K A244015 nonn,frac %O A244015 0,2 %A A244015 _N. J. A. Sloane_, Jun 18 2014