cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244037 Numbers of the form x^2+14y^2.

Original entry on oeis.org

0, 1, 4, 9, 14, 15, 16, 18, 23, 25, 30, 36, 39, 49, 50, 56, 57, 60, 63, 64, 65, 72, 78, 81, 92, 95, 100, 105, 114, 120, 121, 126, 127, 130, 135, 137, 142, 144, 151, 156, 158, 162, 169, 175, 177, 183, 190, 196, 200, 207, 210, 224, 225, 226, 228, 233, 239, 240, 247, 249, 252, 256, 260, 270, 273, 281
Offset: 1

Views

Author

N. J. A. Sloane, Jun 28 2014

Keywords

Crossrefs

For primes see A033211.

Programs

  • Maple
    fd:=proc(a,b,c,M) local dd,xlim,ylim,x,y,t1,t2,t3,t4,i;
    dd:=4*a*c-b^2;
    if dd<=0 then error "Form should be positive definite."; break; fi;
    t1:={};
    xlim:=ceil( sqrt(M/a)*(1+abs(b)/sqrt(dd)));
    ylim:=ceil( 2*sqrt(a*M/dd));
    for x from 0 to xlim do
    for y from -ylim to ylim do
    t2 := a*x^2+b*x*y+c*y^2;
    if t2 <= M then t1:={op(t1),t2}; fi; od: od:
    t3:=sort(convert(t1,list));
    t4:=[];
    for i from 1 to nops(t3) do
       if isprime(t3[i]) then t4:=[op(t4),t3[i]]; fi; od:
    [[seq(t3[i],i=1..nops(t3))], [seq(t4[i],i=1..nops(t4))]];
    end;
    fd(1,0,14,500);
    # Alternative:
    N:= 1000: # for terms <= N
    sort(convert({seq(seq(x^2+14*y^2, y=0..floor(sqrt((N-x^2)/14))),x=0..floor(sqrt(N)))},list)); # Robert Israel, Sep 30 2020
  • Mathematica
    M = 1000; (* for terms <= M *)
    Table[x^2 + 14 y^2, {x, 0, Floor@Sqrt[M]}, {y, 0, Floor@Sqrt[(M - x^2)/14]}] // Flatten // Union (* Jean-François Alcover, Feb 08 2023, after Robert Israel *)