This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244041 #32 Mar 26 2024 09:14:38 %S A244041 0,1,2,3,3,4,5,6,5,6,7,8,6,7,8,9,6,7,8,9,9,10,11,12,8,9,10,11,10,11, %T A244041 12,13,8,9,10,11,11,12,13,14,12,13,14,15,9,10,11,12,11,12,13,14,14,15, %U A244041 16,17,14,15,16,17,10,11,12,13,11,12,13,14,14,15,16,17 %N A244041 Sum of digits of n written in fractional base 4/3. %C A244041 The base 4/3 expansion is unique and thus the sum of digits function is well-defined. %H A244041 G. C. Greubel, <a href="/A244041/b244041.txt">Table of n, a(n) for n = 0..1000</a> %H A244041 F. M. Dekking, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL26/Dekking/dek25.html">The Thue-Morse Sequence in Base 3/2</a>, J. Int. Seq., Vol. 26 (2023), Article 23.2.3. %H A244041 Kevin Ryde, <a href="/A244041/a244041_1.pdf">Plot for Upper/Lower Bound Factors</a> (and <a href="/A244041/a244041.tex">LaTeX source</a>). %H A244041 <a href="/index/Ba#base_fractional">Index entries for sequences related to fractional bases</a> %F A244041 a(n) = A007953(A024631(n)). - _Michel Marcus_, Jun 17 2014 %F A244041 a(n) < 3 log(n)/log(4/3) < 11 log(n) for n > 1. Possibly the constant factor can be replaced by 7 or 8. - _Charles R Greathouse IV_, Sep 22 2022 %F A244041 Conjecture: a(n) >> log(n), hence a(n) ≍ log(n). - _Charles R Greathouse IV_, Nov 03 2022 %e A244041 In base 4/3 the number 14 is represented by 3212 and so a(14) = 3 + 2 + 1 + 2 = 8. %t A244041 p:=4; q:=3; a[n_]:= a[n]= If[n==0, 0, a[q*Floor[n/p]] + Mod[n, p]]; Table[a[n], {n,0,75}] (* _G. C. Greubel_, Aug 20 2019 *) %o A244041 (Sage) %o A244041 def base43sum(n): %o A244041 L, i = [n], 1 %o A244041 while L[i-1]>3: %o A244041 x=L[i-1] %o A244041 L[i-1]=x.mod(4) %o A244041 L.append(3*floor(x/4)) %o A244041 i+=1 %o A244041 return sum(L) %o A244041 [base43sum(n) for n in [0..75]] %o A244041 (PARI) a(n) = p=4; q=3; if(n==0,0, a(q*(n\p)) + (n%p)); %o A244041 vector(75, n, n--; a(n)) \\ _G. C. Greubel_, Aug 20 2019 %Y A244041 Cf. A000120, A007953, A024631, A053737, A244040. %K A244041 nonn,base %O A244041 0,3 %A A244041 _Hailey R. Olafson_, Jun 17 2014