cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244079 Numbers n with the property that it is possible to write the base 2 expansion of n as concat(a_2,b_2), with a_2>0 and b_2>0 such that, converting a_2 and b_2 to base 10 as a and b, we have sigma(a)*sigma(b) = n.

Original entry on oeis.org

28, 120, 162, 196, 868, 1260, 1302, 1800, 2016, 2480, 3780, 4464, 6804, 7440, 8370, 9882, 22200, 32640, 34290, 35640, 40640, 73152, 127008, 187488, 213776, 489888, 572880, 602640, 674082, 1074528, 1077120, 1397088, 1536192, 1582560, 1662120, 1669164, 1781136, 1905120
Offset: 1

Views

Author

Paolo P. Lava, Jul 06 2015

Keywords

Examples

			28 in base 2 is 11100. If we take 11100 = concat(11,100) then 11 and 100 converted to base 2 are 3 and 4. Finally sigma(3)*sigma(4) = 4 * 7 = 28;
120 in base 2 is 1111000. If we take 1111000 = concat(111,1000) then 111 and 1000 converted to base 10 are 7 and 8. Finally sigma(7)*sigma(8) = 8 * 15 = 120.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,c,k,n;
    for n from 1 to q do c:=convert(n, binary, decimal);
    for k from 1 to ilog10(c) do
    a:=convert(trunc(c/10^k), decimal, binary);
    b:=convert((c mod 10^k), decimal, binary);
    if a*b>0 then if sigma(a)*sigma(b)=n then print(n);
    break; fi; fi; od; od; end: P(10^9);
  • Mathematica
    f[n_] := Block[{d = IntegerDigits[n, 2], len = IntegerLength[n, 2], k}, ReplaceAll[Reap[Do[k = {FromDigits[Take[d, i], 2], FromDigits[Take[d, -(len - i)], 2]}; If[! MemberQ[k, 0], Sow@k], {i, 1, len - 1}]], {} -> {1}][[-1, 1]]]; Select[Range@ 100000, MemberQ[DivisorSigma[1, #1] DivisorSigma[1, #2] & @@@ f@ #, #] &] (* Michael De Vlieger, Jul 07 2015 *)