This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244082 #35 Dec 02 2024 12:21:43 %S A244082 0,32,128,288,512,800,1152,1568,2048,2592,3200,3872,4608,5408,6272, %T A244082 7200,8192,9248,10368,11552,12800,14112,15488,16928,18432,20000,21632, %U A244082 23328,25088,26912,28800,30752,32768,34848,36992,39200,41472,43808,46208,48672,51200 %N A244082 a(n) = 32*n^2. %C A244082 Geometric connections of a(n) to the area and perimeter of a square. %C A244082 Area: %C A244082 . half the area of a square with side 8n (cf. A008590); %C A244082 . area of a square with diagonal 8n (cf. A008590); %C A244082 . twice the area of a square with side 4n (cf. A008586); %C A244082 . four times the area of a square with diagonal 4n (cf. A008586); %C A244082 . eight times the area of a square with side 2n (cf. A005843); %C A244082 . sixteen times the area of a square with diagonal 2n (cf. A005843); %C A244082 . thirty two times the area of a square with side n (cf. A001477); %C A244082 . sixty four times the area of a square with diagonal n (cf. A001477). %C A244082 Perimeter: %C A244082 . perimeter of a square with side 8n^2 (cf. A139098); %C A244082 . twice the perimeter of a square with side 4n^2 (cf. A016742); %C A244082 . four times the perimeter of a square with side 2n^2 (cf. A001105); %C A244082 . eight times the perimeter of a square with side n^2 (cf. A000290). %C A244082 Sequence found by reading the line from 0, in the direction 0, 32, ..., in the square spiral whose vertices are the generalized 18-gonal numbers. - _Omar E. Pol_, May 10 2018 %H A244082 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A244082 G.f.: 32*x*(1+x)/(1-x)^3. %F A244082 a(n) = 2 * A016802(n). %F A244082 a(n) = 4 * A139098(n). %F A244082 a(n) = 8 * A016742(n). %F A244082 a(n) = 16 * A001105(n). %F A244082 a(n) = 32 * A000290(n). %F A244082 a(n) = A010021(n) - 2 for n > 0. - _Bruno Berselli_, Jun 24 2014 %F A244082 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - _Wesley Ivan Hurt_, Nov 19 2021 %F A244082 From _Elmo R. Oliveira_, Dec 02 2024: (Start) %F A244082 E.g.f.: 32*x*(1 + x)*exp(x). %F A244082 a(n) = n*A174312(n) = A139098(2*n). (End) %p A244082 A244082:=n->32*n^2; seq(A244082(n), n=0..50); %t A244082 32 Range[0, 50]^2 (* or *) %t A244082 Table[32 n^2, {n, 0, 50}] (* or *) %t A244082 CoefficientList[Series[32 x (1 + x)/(1 - x)^3, {x, 0, 30}], x] %o A244082 (Magma) [32*n^2 : n in [0..50]]; %o A244082 (PARI) a(n)=32*n^2 \\ _Charles R Greathouse IV_, Jun 17 2017 %Y A244082 Pentasection of A077221, A181900. %Y A244082 Cf. A000290, A001105, A010021, A016742, A016802, A139098. %Y A244082 Cf. A001477, A005843, A008586, A008590, A139098, A174312. %K A244082 nonn,easy %O A244082 0,2 %A A244082 _Wesley Ivan Hurt_, Jun 19 2014