This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244091 #12 Feb 16 2025 08:33:22 %S A244091 1,8,4,4,2,0,4,9,8,0,6,3,3,3,9,3,6,9,1,7,0,5,6,9,0,5,4,7,4,9,4,1,2,9, %T A244091 9,6,8,7,9,9,6,8,8,3,9,3,0,7,3,0,1,8,2,2,0,3,8,8,4,4,9,5,6,8,9,7,0,1, %U A244091 1,5,5,2,9,0,3,3,5,0,5,5,1,0,8,5,9,5,3,5,7,8,0,7,5,7,4,7,6,2,0,5 %N A244091 Decimal expansion of sqrt(3)/(2*(sqrt(2)-1))^(1/3), the Landau-Kolmogorov constant C(3,1) for derivatives in L_2(0, infinity). %C A244091 The corresponding Landau-Kolmogorov inequality is ||f'|| <= C(3,1) ||f||^(2/3) ||f'''||^(1/3) where the real-valued function f is defined on the half-line (0,infinity), the involved norm being ||f|| = (integral_(0..infinity) f(x)^2 dx)^(1/2). %D A244091 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.3 Landau-Kolmogorov constants, p. 214. %H A244091 G. C. Greubel, <a href="/A244091/b244091.txt">Table of n, a(n) for n = 1..10000</a> %H A244091 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Landau-KolmogorovConstants.html">Landau-Kolmogorov Constants</a> %H A244091 <a href="/index/Al#algebraic_12">Index entries for algebraic numbers, degree 12</a>. %e A244091 1.84420498063339369170569... %t A244091 RealDigits[ Sqrt[3]/(2*(Sqrt[2] - 1))^(1/3), 10, 100][[1]] %o A244091 (PARI) sqrt(3)/(2*(sqrt(2)-1))^(1/3) \\ _G. C. Greubel_, Jul 05 2017 %K A244091 nonn,cons,easy %O A244091 1,2 %A A244091 _Jean-François Alcover_, Jun 20 2014