This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244096 #25 Jun 13 2021 03:24:48 %S A244096 0,4,9,18,30,45,63,84,108,135,166,200,237,277,321,367,417,471,527,587, %T A244096 649,716,785,858,933,1012,1095,1180,1269,1361,1456,1555,1656,1761, %U A244096 1870,1981,2096,2214,2335,2459,2587,2718,2852,2989,3130,3274,3421,3571,3725,3881,4042 %N A244096 Rounded down area ratio of a circle inscribed in a congruent triangle of a regular n-gon and a circle inscribed between a side of such an n-gon and a circumscribed unit circle. %H A244096 Kival Ngaokrajang, <a href="/A244096/a244096_3.pdf">Illustration of initial terms</a> %F A244096 a(n) = floor((r1(n)/r2(n))^2) where r1(n) = (s(n)/2)*sqrt((2 - s(n))/(2 + s(n))) and r2(n) = (2 - c(n))/4 with s(n) = 2*sin(Pi/n), the side length (length unit 1), and c(n) = 2*cos(Pi/n), the length ratio of the smallest diagonal and the side of a regular n-gon. [Rewritten by _Wolfdieter Lang_, Jul 02 2014] %o A244096 (PARI) %o A244096 { %o A244096 for (n=3, 100, %o A244096 c=2*sin(Pi/n); %o A244096 s=(2+c)/2; %o A244096 r1=(((s-1)^2*(s-c))/s)^(1/2); %o A244096 b=Pi*(n-2)/(2*n); %o A244096 r2=(1-sin(b))/2; %o A244096 a=floor(r1^2/r2^2); %o A244096 print1(a,", ") %o A244096 ) %o A244096 } %Y A244096 Cf. A244093, A244094. %K A244096 nonn %O A244096 3,2 %A A244096 _Kival Ngaokrajang_, Jun 20 2014