This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244110 #29 Feb 16 2025 08:33:22 %S A244110 0,27,1,30,2,1,5,1,3,2,2,7,1,2,12,1,1,23,1,3,1,6,1,3,16,1,1,1,4,3,3,5, %T A244110 1,2,1,1,7,5,1,3,1,1,1,28,14,3,3,1,6,18,11,7,1,29,1,1,2,10,1,6,1,1,8, %U A244110 2,303,3,1,2,1,61,1,11,1,10,10,1,1,2,1,1,45,19,1,1,1,6,1,1,2,4,1 %N A244110 Continued fraction expansion of the prime zeta function at 5. %C A244110 Continued fraction of Sum_{n>=1} 1/prime(n)^5 = 0.0357550174839242571328... %H A244110 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeZetaFunction.html">Prime Zeta Function</a> %H A244110 Wikipedia, <a href="http://en.wikipedia.org/wiki/Prime_zeta_function">Prime Zeta Function</a> %H A244110 <a href="/index/Con#confC">Index entries for continued fractions for constants</a> %H A244110 <a href="/index/Z#zeta_function">Index entries for zeta function</a> %e A244110 1/2^5 + 1/3^5 + 1/5^5 +1/7^5 + 1/11^5 + 1/13^5 +... = 1/(27 + 1/(1 + 1/(30 + 1/(2 + 1/(1 + 1/(5 + 1/(1 + 1/(3 + 1/...)))))))). %t A244110 ContinuedFraction[PrimeZetaP[5], 90] %Y A244110 Cf. A013681, A085965. %K A244110 nonn,cofr %O A244110 0,2 %A A244110 _Ilya Gutkovskiy_, Dec 16 2015