This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244116 #31 Jan 28 2023 09:26:59 %S A244116 1,0,1,0,1,-1,0,1,-2,4,0,1,-4,12,-27,0,1,-8,36,-108,256,0,1,-16,108, %T A244116 -432,1280,-3125,0,1,-32,324,-1728,6400,-18750,46656,0,1,-64,972, %U A244116 -6912,32000,-112500,326592,-823543,0,1,-128,2916,-27648,160000,-675000,2286144,-6588344,16777216 %N A244116 Triangle read by rows: coefficients T(n,k) of a binomial decomposition of 1 as Sum_{k=0..n} T(n,k)*binomial(n,k). %C A244116 T(n,k) = (1-k)^(k-1) * k^(n-k) for k>0, and T(n,0) = 0^n by convention. %H A244116 Stanislav Sykora, <a href="/A244116/b244116.txt">Table of n, rows 0..100</a> %H A244116 S. Sykora, <a href="http://dx.doi.org/10.3247/SL5Math14.004">An Abel's Identity and its Corollaries</a>, Stan's Library, Volume V, 2014. See eq.(4) with b=1. %e A244116 The first few rows of the triangle are: %e A244116 1 %e A244116 0 1 %e A244116 0 1 -1 %e A244116 0 1 -2 4 %e A244116 0 1 -4 12 -27 %e A244116 0 1 -8 36 -108 256 %e A244116 ... %p A244116 A244116 := (n, j) -> (-1)^(j + 1) * j^(n - j) * (j - 1)^(j - 1): %p A244116 for n from 0 to 9 do seq(A244116(n, k), k = 0..n) od; # _Peter Luschny_, Jan 28 2023 %o A244116 (PARI) seq(nmax,b)={my(v,n,k,irow); %o A244116 v = vector((nmax+1)*(nmax+2)/2);v[1]=1; %o A244116 for(n=1,nmax,irow=1+n*(n+1)/2;v[irow]=0; %o A244116 for(k=1,n,v[irow+k] = (1-k*b)^(k-1)*(k*b)^(n-k);); %o A244116 );return(v);} %o A244116 a=seq(100,1); %Y A244116 Cf. A244117, A244118, A244119, A244120, A244121, A244122, A244123, A244124, A244125, A244126, A244127, A244128, A244129, A244130, A244131, A244132, A244133, A244134, A244135, A244136, A244137, A244138, A244139, A244140, A244141, A244142, A244143. %Y A244116 Cf. A357247. %K A244116 sign,tabl %O A244116 0,9 %A A244116 _Stanislav Sykora_, Jun 21 2014