This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244117 #15 Jun 24 2014 00:40:21 %S A244117 1,0,1,0,2,-1,0,3,-6,4,0,4,-24,48,-27,0,5,-80,360,-540,256,0,6,-240, %T A244117 2160,-6480,7680,-3125,0,7,-672,11340,-60480,134400,-131250,46656,0,8, %U A244117 -1792,54432,-483840,1792000,-3150000,2612736,-823543,0,9,-4608,244944,-3483648,20160000,-56700000,82301184,-59295096,16777216 %N A244117 Triangle read by rows: terms of a binomial decomposition of 1 as Sum(k=0..n)T(n,k). %C A244117 T(n,k)=(1-k)^(k-1)*k^(n-k)*binomial(n,k) for k>0, while T(n,0)=0^n by convention. %H A244117 Stanislav Sykora, <a href="/A244117/b244117.txt">Table of n, a(n) for rows 0..100</a> %H A244117 S. Sykora, <a href="http://dx.doi.org/10.3247/SL5Math14.004">An Abel's Identity and its Corollaries</a>, Stan's Library, Volume V, 2014, DOI 10.3247/SL5Math14.004. See eq.(4), with b=1. %e A244117 First rows of the triangle, all summing up to 1: %e A244117 1 %e A244117 0 1 %e A244117 0 2 -1 %e A244117 0 3 -6 4 %e A244117 0 4 -24 48 -27 %e A244117 0 5 -80 360 -540 256 %o A244117 (PARI) seq(nmax,b)={my(v,n,k,irow); %o A244117 v = vector((nmax+1)*(nmax+2)/2);v[1]=1; %o A244117 for(n=1,nmax,irow=1+n*(n+1)/2;v[irow]=0; %o A244117 for(k=1,n,v[irow+k] = (1-k*b)^(k-1)*(k*b)^(n-k)*binomial(n,k);); %o A244117 );return(v);} %o A244117 a=seq(100,1); %Y A244117 Cf. A244116, A244118, A244119, A244120, A244121, A244122, A244123, A244124, A244125, A244126, A244127, A244128, A244129, A244130, A244131, A244132, A244133, A244134, A244135, A244136, A244137, A244138, A244139, A244140, A244141, A244142, A244143. %K A244117 sign,tabl %O A244117 0,5 %A A244117 _Stanislav Sykora_, Jun 21 2014