A244118 Triangle read by rows: coefficients T(n,k) of a binomial decomposition of 1 as Sum_{k=0..n} T(n,k)*binomial(n,k).
1, 0, 1, 0, -1, 3, 0, 1, -6, 16, 0, -1, 12, -48, 125, 0, 1, -24, 144, -500, 1296, 0, -1, 48, -432, 2000, -6480, 16807, 0, 1, -96, 1296, -8000, 32400, -100842, 262144, 0, -1, 192, -3888, 32000, -162000, 605052, -1835008, 4782969, 0, 1, -384, 11664, -128000, 810000, -3630312, 12845056, -38263752, 100000000
Offset: 0
Examples
The first rows of the triangle are: 1 0 1 0 -1 3 0 1 -6 16 0 -1 12 -48 125 0 1 -24 144 -500 1296
Links
- Stanislav Sykora, Table of n, a(n) for rows 0..100
- S. Sykora, An Abel's Identity and its Corollaries, Stan's Library, Volume V, 2014, DOI 10.3247/SL5Math14.004. See eq.(4), with b=-1.
Crossrefs
Programs
-
PARI
seq(nmax,b)={my(v,n,k,irow); v = vector((nmax+1)*(nmax+2)/2);v[1]=1; for(n=1,nmax,irow=1+n*(n+1)/2;v[irow]=0; for(k=1,n,v[irow+k] = (1-k*b)^(k-1)*(k*b)^(n-k);); );return(v);} a=seq(100,-1);
Comments