cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244118 Triangle read by rows: coefficients T(n,k) of a binomial decomposition of 1 as Sum_{k=0..n} T(n,k)*binomial(n,k).

Original entry on oeis.org

1, 0, 1, 0, -1, 3, 0, 1, -6, 16, 0, -1, 12, -48, 125, 0, 1, -24, 144, -500, 1296, 0, -1, 48, -432, 2000, -6480, 16807, 0, 1, -96, 1296, -8000, 32400, -100842, 262144, 0, -1, 192, -3888, 32000, -162000, 605052, -1835008, 4782969, 0, 1, -384, 11664, -128000, 810000, -3630312, 12845056, -38263752, 100000000
Offset: 0

Views

Author

Stanislav Sykora, Jun 21 2014

Keywords

Comments

T(n,k) = (1+k)^(k-1)*(-k)^(n-k) for k>0, where T(n,0) = 0^n.

Examples

			The first rows of the triangle are:
1
0  1
0 -1   3
0  1  -6  16
0 -1  12 -48  125
0  1 -24 144 -500 1296
		

Crossrefs

Programs

  • PARI
    seq(nmax,b)={my(v,n,k,irow);
      v = vector((nmax+1)*(nmax+2)/2);v[1]=1;
      for(n=1,nmax,irow=1+n*(n+1)/2;v[irow]=0;
        for(k=1,n,v[irow+k] = (1-k*b)^(k-1)*(k*b)^(n-k););
      );return(v);}
      a=seq(100,-1);