This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244120 #15 Jun 25 2014 09:38:22 %S A244120 1,0,1,0,2,0,0,3,6,0,0,4,32,12,0,0,5,120,180,20,0,0,6,384,1458,768,30, %T A244120 0,0,7,1120,9072,12096,2800,42,0,0,8,3072,48600,131072,81000,9216,56, %U A244120 0,0,9,8064,236196,1152000,1440000,472392,28224,72,0,0,10,20480,1071630,8847360,19531250,13271040,2500470,81920,90,0 %N A244120 Triangle read by rows: coefficients T(n,k) of a binomial decomposition of n^n as Sum(k=0..n)T(n,k)*binomial(n,k). %C A244120 T(n,k)=n*(n-k)^(k-1)*k^(n-k) for k>0, while T(n,0)=0^n by convention. %H A244120 Stanislav Sykora, <a href="/A244120/b244120.txt">Table of n, a(n) for rows 0..100</a> %H A244120 S. Sykora, <a href="http://dx.doi.org/10.3247/SL5Math14.004">An Abel's Identity and its Corollaries</a>, Stan's Library, Volume V, 2014, DOI 10.3247/SL5Math14.004. See eq.(5), with b=1. %e A244120 The first rows of the triangle are: %e A244120 1 %e A244120 0 1 %e A244120 0 2 0 %e A244120 0 3 6 0 %e A244120 0 4 32 12 0 %e A244120 0 5 120 180 20 0 %o A244120 (PARI) seq(nmax,b)={my(v,n,k,irow); %o A244120 v = vector((nmax+1)*(nmax+2)/2);v[1]=1; %o A244120 for(n=1,nmax,irow=1+n*(n+1)/2;v[irow]=0; %o A244120 for(k=1,n,v[irow+k] = n*(n-k*b)^(k-1)*(k*b)^(n-k););); %o A244120 return(v);} %o A244120 a=seq(100,1); %Y A244120 Cf. A244116, A244117, A244118, A244119, A244121, A244122, A244123, A244124, A244125, A244126, A244127, A244128, A244129, A244130, A244131, A244132, A244133, A244134, A244135, A244136, A244137, A244138, A244139, A244140, A244141, A244142, A244143. %K A244120 nonn,tabl %O A244120 0,5 %A A244120 _Stanislav Sykora_, Jun 21 2014