A244121 Triangle read by rows: terms T(n,k) of a binomial decomposition of n^n as Sum(k=0..n)T(n,k).
1, 0, 1, 0, 4, 0, 0, 9, 18, 0, 0, 16, 192, 48, 0, 0, 25, 1200, 1800, 100, 0, 0, 36, 5760, 29160, 11520, 180, 0, 0, 49, 23520, 317520, 423360, 58800, 294, 0, 0, 64, 86016, 2721600, 9175040, 4536000, 258048, 448, 0, 0, 81, 290304, 19840464, 145152000, 181440000, 39680928, 1016064, 648, 0
Offset: 0
Examples
First rows of the triangle, all summing up to n^n: 1 0 1 0 4 0 0 9 18 0 0 16 192 48 0 0 25 1200 1800 100 0
Links
- Stanislav Sykora, Table of n, a(n) for rows 0..100
- S. Sykora, An Abel's Identity and its Corollaries, Stan's Library, Volume V, 2014, DOI 10.3247/SL5Math14.004. See eq.(5), with b=1.
Crossrefs
Programs
-
PARI
seq(nmax,b)={my(v,n,k,irow); v = vector((nmax+1)*(nmax+2)/2);v[1]=1; for(n=1,nmax,irow=1+n*(n+1)/2;v[irow]=0; for(k=1,n,v[irow+k]=n*(n-k*b)^(k-1)*(k*b)^(n-k)*binomial(n,k););); return(v);} a=seq(100,1);
Comments