This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244122 #12 Jun 25 2014 09:38:45 %S A244122 1,0,1,0,-2,8,0,3,-30,108,0,-4,96,-588,2048,0,5,-280,2880,-14580, %T A244122 50000,0,-6,768,-13122,96000,-439230,1492992,0,7,-2016,56700,-596288, %U A244122 3628800,-15594306,52706752,0,-8,5120,-235224,3538944,-28561000,154893312,-637875000,2147483648,0 %N A244122 Triangle read by rows: coefficients T(n,k) of a binomial decomposition of n^n as Sum(k=0..n)T(n,k)*binomial(n,k). %C A244122 T(n,k)=n*(n+k)^(k-1)*(-k)^(n-k) for k>0, while T(n,0)=0^n by convention. %H A244122 Stanislav Sykora, <a href="/A244122/b244122.txt">Table of n, a(n) for rows 0..100</a> %H A244122 S. Sykora, <a href="http://dx.doi.org/10.3247/SL5Math14.004">An Abel's Identity and its Corollaries</a>, Stan's Library, Volume V, 2014, DOI 10.3247/SL5Math14.004. See eq.(5), with b=-1. %e A244122 The first rows of the triangle are: %e A244122 1 %e A244122 0 1 %e A244122 0 -2 8 %e A244122 0 3 -30 108 %e A244122 0 -4 96 -588 2048 %e A244122 0 5 -280 2880 -14580 50000 %o A244122 (PARI) seq(nmax, b)={my(v, n, k, irow); %o A244122 v = vector((nmax+1)*(nmax+2)/2); v[1]=1; %o A244122 for(n=1, nmax, irow=1+n*(n+1)/2; v[irow]=0; %o A244122 for(k=1, n, v[irow+k] = n*(n-k*b)^(k-1)*(k*b)^(n-k); ); ); %o A244122 return(v); } %o A244122 a=seq(100,-1); %Y A244122 Cf. A244116, A244117, A244118, A244119, A244120, A244121, A244123, A244124, A244125, A244126, A244127, A244128, A244129, A244130, A244131, A244132, A244133, A244134, A244135, A244136, A244137, A244138, A244139, A244140, A244141, A244142, A244143. %K A244122 sign,tabl %O A244122 0,5 %A A244122 _Stanislav Sykora_, Jun 21 2014