A244123 Triangle read by rows: terms T(n,k) of a binomial decomposition of n^n as Sum(k=0..n)T(n,k).
1, 0, 1, 0, -4, 8, 0, 9, -90, 108, 0, -16, 576, -2352, 2048, 0, 25, -2800, 28800, -72900, 50000, 0, -36, 11520, -262440, 1440000, -2635380, 1492992, 0, 49, -42336, 1984500, -20870080, 76204800, -109160142, 52706752, 0, -64, 143360, -13172544, 247726080, -1599416000, 4337012736, -5103000000, 2147483648
Offset: 0
Examples
First rows of the triangle, all summing up to n^n: 1 0 1 0 -4 8 0, 9 -90 108 0 -16 576 -2352 2048 0, 25 -2800 28800 -72900 50000
Links
- Stanislav Sykora, Table of n, a(n) for rows 0..100
- S. Sykora, An Abel's Identity and its Corollaries, Stan's Library, Volume V, 2014, DOI 10.3247/SL5Math14.004. See eq.(5), with b=-1.
Crossrefs
Programs
-
PARI
seq(nmax, b)={my(v, n, k, irow); v = vector((nmax+1)*(nmax+2)/2); v[1]=1; for(n=1, nmax, irow=1+n*(n+1)/2; v[irow]=0; for(k=1, n, v[irow+k]=n*(n-k*b)^(k-1)*(k*b)^(n-k)*binomial(n, k); ); ); return(v); } a=seq(100,-1);
Comments