cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244124 Triangle read by rows: coefficients T(n,k) of a binomial decomposition of 2^n-1 as Sum(k=0..n)T(n,k)*binomial(n,k).

Original entry on oeis.org

0, 0, 1, 0, 2, -1, 0, 4, -3, 4, 0, 8, -9, 16, -27, 0, 16, -27, 64, -135, 256, 0, 32, -81, 256, -675, 1536, -3125, 0, 64, -243, 1024, -3375, 9216, -21875, 46656, 0, 128, -729, 4096, -16875, 55296, -153125, 373248, -823543, 0, 256, -2187, 16384, -84375, 331776, -1071875, 2985984, -7411887, 16777216
Offset: 0

Views

Author

Stanislav Sykora, Jun 21 2014

Keywords

Comments

T(n,k)=(1-k)^(k-1)*(1+k)^(n-k) for k>0, while T(n,0)=0 by convention.

Examples

			The first rows of the triangle are:
0
0 1
0 2  -1
0 4  -3  4
0 8  -9  16 -27
0 16 -27 64 -135 256
		

Crossrefs

Programs

  • PARI
    seq(nmax,b)={my(v,n,k,irow);
      v = vector((nmax+1)*(nmax+2)/2);v[1]=0;
      for(n=1,nmax,irow=1+n*(n+1)/2;v[irow]=0;
        for(k=1,n,v[irow+k]=(1-k*b)^(k-1)*(1+k*b)^(n-k);););
      return(v);}
      a=seq(100,1)