A244125 Triangle read by rows: terms T(n,k) of a binomial decomposition of 2^n-1 as Sum(k=0..n)T(n,k).
0, 0, 1, 0, 4, -1, 0, 12, -9, 4, 0, 32, -54, 64, -27, 0, 80, -270, 640, -675, 256, 0, 192, -1215, 5120, -10125, 9216, -3125, 0, 448, -5103, 35840, -118125, 193536, -153125, 46656, 0, 1024, -20412, 229376, -1181250, 3096576, -4287500, 2985984, -823543
Offset: 0
Examples
First rows of the triangle, all summing up to 2^n-1: 1 0 1 0 4 -1 0 12 -9 4 0 32 -54 64 -27 0 80 -270 640 -675 256
Links
- Stanislav Sykora, Table of n, a(n) for rows 0..100
- S. Sykora, An Abel's Identity and its Corollaries, Stan's Library, Volume V, 2014, DOI 10.3247/SL5Math14.004. See eq.(6), with b=1 and a=1.
Crossrefs
Programs
-
PARI
seq(nmax, b)={my(v, n, k, irow); v = vector((nmax+1)*(nmax+2)/2); v[1]=0; for(n=1, nmax, irow=1+n*(n+1)/2; v[irow]=0; for(k=1, n, v[irow+k]=(1-k*b)^(k-1)*(1+k*b)^(n-k)*binomial(n,k); ); ); return(v); } a=seq(100, 1)
Comments