A244127 Triangle read by rows: terms T(n,k) of a binomial decomposition of 2^n-1 as Sum(k=0..n)T(n,k).
0, 0, 1, 0, 0, 3, 0, 0, -9, 16, 0, 0, 18, -128, 125, 0, 0, -30, 640, -1875, 1296, 0, 0, 45, -2560, 16875, -31104, 16807, 0, 0, -63, 8960, -118125, 435456, -588245, 262144, 0, 0, 84, -28672, 708750, -4644864, 11764900, -12582912, 4782969
Offset: 0
Examples
First rows of the triangle, all summing up to 2^n-1: 0, 0, 1, 0, 0, 3, 0, 0, -9, 16, 0, 0, 18, -128, 125, 0, 0, -30, 640, -1875, 1296,
Links
- Stanislav Sykora, Table of n, a(n) for rows 0..100
- S. Sykora, An Abel's Identity and its Corollaries, Stan's Library, Volume V, 2014, DOI 10.3247/SL5Math14.004. See eq.(6), with b=-1 and a=1.
Crossrefs
Programs
-
PARI
seq(nmax, b)={my(v, n, k, irow); v = vector((nmax+1)*(nmax+2)/2); v[1]=0; for(n=1, nmax, irow=1+n*(n+1)/2; v[irow]=0; for(k=1, n, v[irow+k]=(1-k*b)^(k-1)*(1+k*b)^(n-k)*binomial(n, k); ); ); return(v); } a=seq(100,-1)
Comments