cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244128 Triangle read by rows: coefficients T(n,k) of a binomial decomposition of 0^(n-1) as Sum(k=0..n)T(n,k)*binomial(n,k).

Original entry on oeis.org

0, 1, 0, 1, -2, 0, 1, -4, 9, 0, 1, -8, 27, -64, 0, 1, -16, 81, -256, 625, 0, 1, -32, 243, -1024, 3125, -7776, 0, 1, -64, 729, -4096, 15625, -46656, 117649, 0, 1, -128, 2187, -16384, 78125, -279936, 823543, -2097152, 0, 1, -256, 6561, -65536, 390625, -1679616, 5764801, -16777216, 43046721
Offset: 1

Views

Author

Stanislav Sykora, Jun 22 2014

Keywords

Comments

T(n,k)=(-k)^(k-1)*k^(n-k) for k>0, while T(n,0)=0 by convention. The flattened triangle start with row 1, coefficient T(1,0).
Resembles A076014, but with added powers of 0, and with sign-alternating columns.

Examples

			The first rows of the triangle (starting at n=1):
0, 1,
0, 1, -2,
0, 1, -4, 9,
0, 1, -8, 27, -64,
0, 1, -16, 81, -256, 625,
0, 1, -32, 243, -1024, 3125, -7776,
		

Crossrefs

Programs

  • PARI
    seq(nmax,b)={my(v,n,k,irow);
    v = vector((nmax+1)*(nmax+2)/2-1);
    for(n=1,nmax,irow=n*(n+1)/2;v[irow]=0;
      for(k=1,n,v[irow+k]=(-1)^(k-1)*(k*b)^(n-1);););
    return(v);}
    a=seq(100,1);