A244132 Triangle read by rows: coefficients T(n,k) of a binomial decomposition of n as Sum(k=0..n)T(n,k)*binomial(n,k).
0, 0, 1, 0, 0, 2, 0, 0, -2, 9, 0, 0, 2, -18, 64, 0, 0, -2, 36, -192, 625, 0, 0, 2, -72, 576, -2500, 7776, 0, 0, -2, 144, -1728, 10000, -38880, 117649, 0, 0, 2, -288, 5184, -40000, 194400, -705894, 2097152, 0, 0, -2, 576, -15552, 160000, -972000, 4235364, -14680064, 43046721
Offset: 0
Examples
The first rows of the triangle are: 0, 0, 1, 0, 0, 2, 0, 0, -2, 9, 0, 0, 2, -18, 64, 0, 0, -2, 36, -192, 625,
Links
- Stanislav Sykora, Table of n, a(n) for rows 0..100
- S. Sykora, An Abel's Identity and its Corollaries, Stan's Library, Volume V, 2014, DOI 10.3247/SL5Math14.004. See eq.(12), with b=-1.
Crossrefs
Programs
-
PARI
seq(nmax, b)={my(v, n, k, irow); v = vector((nmax+1)*(nmax+2)/2); v[1]=0; for(n=1, nmax, irow=1+n*(n+1)/2; v[irow]=0; for(k=1, n, v[irow+k]=(-k*b)^(k-1)*(1+k*b)^(n-k); ); ); return(v); } a=seq(100,-1);
Comments