A244133 Triangle read by rows: terms T(n,k) of a binomial decomposition of n as Sum(k=0..n)T(n,k).
0, 0, 1, 0, 0, 2, 0, 0, -6, 9, 0, 0, 12, -72, 64, 0, 0, -20, 360, -960, 625, 0, 0, 30, -1440, 8640, -15000, 7776, 0, 0, -42, 5040, -60480, 210000, -272160, 117649, 0, 0, 56, -16128, 362880, -2240000, 5443200, -5647152, 2097152, 0, 0, -72, 48384, -1959552, 20160000, -81648000, 152473104, -132120576, 43046721
Offset: 0
Examples
First rows of the triangle, all summing up to n: 0, 0, 1, 0, 0, 2, 0, 0, -6, 9, 0, 0, 12, -72, 64, 0, 0, -20, 360, -960, 625,
Links
- Stanislav Sykora, Table of n, a(n) for rows 0..100
- S. Sykora, An Abel's Identity and its Corollaries, Stan's Library, Volume V, 2014, DOI 10.3247/SL5Math14.004. See eq.(12), with b=-1.
Crossrefs
Programs
-
PARI
seq(nmax, b)={my(v, n, k, irow); v = vector((nmax+1)*(nmax+2)/2); v[1]=0; for(n=1, nmax, irow=1+n*(n+1)/2; v[irow]=0; for(k=1, n, v[irow+k]=(-k*b)^(k-1)*(1+k*b)^(n-k)*binomial(n, k); ); ); return(v); } a=seq(100,-1);
Comments