A244134 Triangle read by rows: coefficients T(n,k) of a binomial decomposition of n^n as Sum(k=0..n)T(n,k)*binomial(n,k).
1, 0, 1, 0, 3, -2, 0, 16, -10, 9, 0, 125, -72, 63, -64, 0, 1296, -686, 576, -576, 625, 0, 16807, -8192, 6561, -6400, 6875, -7776, 0, 262144, -118098, 90000, -85184, 90000, -101088, 117649, 0, 4782969, -2000000, 1449459, -1327104, 1373125, -1524096, 1764735, -2097152
Offset: 0
Examples
The first rows of the triangle are: 1, 0, 1, 0, 3, -2, 0, 16, -10, 9, 0, 125, -72, 63, -64, 0, 1296, -686, 576, -576, 625,
Links
- Stanislav Sykora, Table of n, a(n) for rows 0..100
- S. Sykora, An Abel's Identity and its Corollaries, Stan's Library, Volume V, 2014, DOI 10.3247/SL5Math14.004. See eq.(13), with b=1.
Crossrefs
Programs
-
PARI
seq(nmax,b)={my(v,n,k,irow); v = vector((nmax+1)*(nmax+2)/2);v[1]=1; for(n=1,nmax,irow=1+n*(n+1)/2;v[irow]=0; for(k=1,n,v[irow+k]=(-k*b)^(k-1)*(n+k*b)^(n-k););); return(v);} a=seq(100,1);
Comments