cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244134 Triangle read by rows: coefficients T(n,k) of a binomial decomposition of n^n as Sum(k=0..n)T(n,k)*binomial(n,k).

Original entry on oeis.org

1, 0, 1, 0, 3, -2, 0, 16, -10, 9, 0, 125, -72, 63, -64, 0, 1296, -686, 576, -576, 625, 0, 16807, -8192, 6561, -6400, 6875, -7776, 0, 262144, -118098, 90000, -85184, 90000, -101088, 117649, 0, 4782969, -2000000, 1449459, -1327104, 1373125, -1524096, 1764735, -2097152
Offset: 0

Views

Author

Stanislav Sykora, Jun 22 2014

Keywords

Comments

T(n,k)=(-k)^(k-1)*(n+k)^(n-k) for k>0, while T(n,0)=0^n by convention.

Examples

			The first rows of the triangle are:
1,
0, 1,
0, 3, -2,
0, 16, -10, 9,
0, 125, -72, 63, -64,
0, 1296, -686, 576, -576, 625,
		

Crossrefs

Programs

  • PARI
    seq(nmax,b)={my(v,n,k,irow);
    v = vector((nmax+1)*(nmax+2)/2);v[1]=1;
    for(n=1,nmax,irow=1+n*(n+1)/2;v[irow]=0;
      for(k=1,n,v[irow+k]=(-k*b)^(k-1)*(n+k*b)^(n-k);););
    return(v);}
    a=seq(100,1);