A244135 Triangle read by rows: terms T(n,k) of a binomial decomposition of n^n as Sum(k=0..n)T(n,k).
1, 0, 1, 0, 6, -2, 0, 48, -30, 9, 0, 500, -432, 252, -64, 0, 6480, -6860, 5760, -2880, 625, 0, 100842, -122880, 131220, -96000, 41250, -7776, 0, 1835008, -2480058, 3150000, -2981440, 1890000, -707616, 117649, 0, 38263752, -56000000, 81169704, -92897280, 76895000, -42674688, 14117880, -2097152
Offset: 0
Examples
First rows of the triangle, all summing up to n^n: 1, 0, 1, 0, 6, -2, 0, 48, -30, 9, 0, 500, -432, 252, -64, 0, 6480, -6860, 5760, -2880, 625,
Links
- Stanislav Sykora, Table of n, a(n) for rows 0..100
- S. Sykora, An Abel's Identity and its Corollaries, Stan's Library, Volume V, 2014, DOI 10.3247/SL5Math14.004. See eq.(13), with b=1.
Crossrefs
Programs
-
PARI
seq(nmax, b)={my(v, n, k, irow); v = vector((nmax+1)*(nmax+2)/2); v[1]=1; for(n=1, nmax, irow=1+n*(n+1)/2; v[irow]=0; for(k=1, n, v[irow+k]=(-k*b)^(k-1)*(n+k*b)^(n-k)*binomial(n,k); ); ); return(v); } a=seq(100, 1);
Comments