cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244136 Triangle read by rows: coefficients T(n,k) of a binomial decomposition of n^n as Sum(k=0..n)T(n,k)*binomial(n,k).

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 4, 2, 9, 0, 27, 8, 9, 64, 0, 256, 54, 36, 64, 625, 0, 3125, 512, 243, 256, 625, 7776, 0, 46656, 6250, 2304, 1728, 2500, 7776, 117649, 0, 823543, 93312, 28125, 16384, 16875, 31104, 117649, 2097152, 0, 16777216, 1647086, 419904, 200000, 160000, 209952, 470596, 2097152, 43046721
Offset: 0

Views

Author

Stanislav Sykora, Jun 22 2014

Keywords

Comments

T(n,k)=(k)^(k-1)*(n-k)^(n-k) for k>0, while T(n,0)=0^n by convention.

Examples

			The first rows of the triangle are:
1,
0, 1,
0, 1, 2,
0, 4, 2, 9,
0, 27, 8, 9, 64,
0, 256, 54, 36, 64, 625,
		

Crossrefs

Programs

  • PARI
    seq(nmax, b)={my(v, n, k, irow);
    v = vector((nmax+1)*(nmax+2)/2); v[1]=1;
    for(n=1, nmax, irow=1+n*(n+1)/2; v[irow]=0;
      for(k=1, n, v[irow+k]=(-k*b)^(k-1)*(n+k*b)^(n-k); ); );
    return(v); }
    a=seq(100,-1);