A244136 Triangle read by rows: coefficients T(n,k) of a binomial decomposition of n^n as Sum(k=0..n)T(n,k)*binomial(n,k).
1, 0, 1, 0, 1, 2, 0, 4, 2, 9, 0, 27, 8, 9, 64, 0, 256, 54, 36, 64, 625, 0, 3125, 512, 243, 256, 625, 7776, 0, 46656, 6250, 2304, 1728, 2500, 7776, 117649, 0, 823543, 93312, 28125, 16384, 16875, 31104, 117649, 2097152, 0, 16777216, 1647086, 419904, 200000, 160000, 209952, 470596, 2097152, 43046721
Offset: 0
Examples
The first rows of the triangle are: 1, 0, 1, 0, 1, 2, 0, 4, 2, 9, 0, 27, 8, 9, 64, 0, 256, 54, 36, 64, 625,
Links
- Stanislav Sykora, Table of n, a(n) for rows 0..100
- S. Sykora, An Abel's Identity and its Corollaries, Stan's Library, Volume V, 2014, DOI 10.3247/SL5Math14.004. See eq.(13), with b=-1.
Crossrefs
Programs
-
PARI
seq(nmax, b)={my(v, n, k, irow); v = vector((nmax+1)*(nmax+2)/2); v[1]=1; for(n=1, nmax, irow=1+n*(n+1)/2; v[irow]=0; for(k=1, n, v[irow+k]=(-k*b)^(k-1)*(n+k*b)^(n-k); ); ); return(v); } a=seq(100,-1);
Comments