A244137 Triangle read by rows: terms T(n,k) of a binomial decomposition of n^n as Sum(k=0..n)T(n,k).
1, 0, 1, 0, 2, 2, 0, 12, 6, 9, 0, 108, 48, 36, 64, 0, 1280, 540, 360, 320, 625, 0, 18750, 7680, 4860, 3840, 3750, 7776, 0, 326592, 131250, 80640, 60480, 52500, 54432, 117649, 0, 6588344, 2612736, 1575000, 1146880, 945000, 870912, 941192, 2097152
Offset: 0
Examples
First rows of the triangle, all summing up to n^n: 1, 0, 1, 0, 2, 2, 0, 12, 6, 9, 0, 108, 48, 36, 64, 0, 1280, 540, 360, 320, 625,
Links
- Stanislav Sykora, Table of n, a(n) for rows 0..100
- S. Sykora, An Abel's Identity and its Corollaries, Stan's Library, Volume V, 2014, DOI 10.3247/SL5Math14.004. See eq.(13), with b=-1.
Crossrefs
Programs
-
PARI
seq(nmax, b)={my(v, n, k, irow); v = vector((nmax+1)*(nmax+2)/2); v[1]=1; for(n=1, nmax, irow=1+n*(n+1)/2; v[irow]=0; for(k=1, n, v[irow+k]=(-k*b)^(k-1)*(n+k*b)^(n-k)*binomial(n, k); ); ); return(v); } a=seq(100,-1);
Comments