cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244138 Triangle read by rows: coefficients T(n,k) of a binomial decomposition of n*(n-1) as Sum(k=0..n)T(n,k)*binomial(n,k).

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 0, 0, 4, -6, 0, 0, 8, -18, 36, 0, 0, 16, -54, 144, -320, 0, 0, 32, -162, 576, -1600, 3750, 0, 0, 64, -486, 2304, -8000, 22500, -54432, 0, 0, 128, -1458, 9216, -40000, 135000, -381024, 941192, 0, 0, 256, -4374, 36864, -200000, 810000, -2667168, 7529536, -18874368
Offset: 0

Views

Author

Stanislav Sykora, Jun 22 2014

Keywords

Comments

T(n,k)=k*(1-k)^(k-2)*k^(n-k) for k>1, while T(n,0)=T(n,1)=0 by convention.

Examples

			The first rows of the triangle are:
0,
0, 0,
0, 0, 2,
0, 0, 4, -6,
0, 0, 8, -18, 36,
0, 0, 16, -54, 144, -320,
0, 0, 32, -162, 576, -1600, 3750,
		

Crossrefs

Programs

  • PARI
    seq(nmax)={my(v,n,k,irow);
    v = vector((nmax+1)*(nmax+2)/2);v[1]=0;
    for(n=1,nmax,irow=1+n*(n+1)/2;v[irow]=0;v[irow+1]=0;
      for(k=2,n,v[irow+k]=k*(1-k)^(k-2)*k^(n-k);););
    return(v);}
    a=seq(100);