A244140 Triangle read by rows: coefficients T(n,k) of a binomial decomposition of n*(-1)^n as Sum(k=0..n)T(n,k)*binomial(n,k).
0, 0, -1, 0, 0, 2, 0, 0, 0, -3, 0, 0, 0, -3, 16, 0, 0, 0, -3, 32, -135, 0, 0, 0, -3, 64, -405, 1536, 0, 0, 0, -3, 128, -1215, 6144, -21875, 0, 0, 0, -3, 256, -3645, 24576, -109375, 373248, 0, 0, 0, -3, 512, -10935, 98304, -546875, 2239488, -7411887, 0, 0, 0, -3, 1024, -32805, 393216, -2734375, 13436928, -51883209, 167772160
Offset: 0
Examples
The first rows of the triangle are: 0, 0, -1, 0, 0, 2, 0, 0, 0, -3, 0, 0, 0, -3, 16, 0, 0, 0, -3, 32, -135, 0, 0, 0, -3, 64, -405, 1536, 0, 0, 0, -3, 128, -1215, 6144, -21875,
Links
- Stanislav Sykora, Table of n, a(n) for rows 0..100
- S. Sykora, An Abel's Identity and its Corollaries, Stan's Library, Volume V, 2014, DOI 10.3247/SL5Math14.004. See eq.(21), with a=2, b=1.
Crossrefs
Programs
-
PARI
seq(nmax)={my(v,n,k,irow); v = vector((nmax+1)*(nmax+2)/2);v[1]=0; for(n=1,nmax,irow=1+n*(n+1)/2; v[irow]=0;if(n==1,v[irow+1]=-1,v[irow+1]=0); for(k=2,n,v[irow+k]=(-1)^k*k*(k-2)^(n-2););); return(v);} a=seq(100);
Comments