cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244141 Triangle read by rows: terms T(n,k) of a binomial decomposition of n*(-1)^n as Sum(k=0..n)T(n,k).

Original entry on oeis.org

0, 0, -1, 0, 0, 2, 0, 0, 0, -3, 0, 0, 0, -12, 16, 0, 0, 0, -30, 160, -135, 0, 0, 0, -60, 960, -2430, 1536, 0, 0, 0, -105, 4480, -25515, 43008, -21875, 0, 0, 0, -168, 17920, -204120, 688128, -875000, 373248, 0, 0, 0, -252, 64512, -1377810, 8257536, -19687500, 20155392, -7411887
Offset: 0

Views

Author

Stanislav Sykora, Jun 23 2014

Keywords

Comments

T(n,k)=(-1)^k*k*(k-2)^(n-2)*binomial(n,k) for k>1, while T(n,0)=0 and T(1,1)=-0^(n-1) by convention.

Examples

			First rows of the triangle, all summing up to n*(-1)^n:
0,
0, -1,
0, 0, 2,
0, 0, 0, -3,
0, 0, 0, -12, 16,
0, 0, 0, -30, 160, -135,
0, 0, 0, -60, 960, -2430, 1536,
		

Crossrefs

Programs

  • PARI
    seq(nmax)={my(v, n, k, irow);
    v = vector((nmax+1)*(nmax+2)/2); v[1]=0;
    for(n=1, nmax, irow=1+n*(n+1)/2;
      v[irow]=0; if(n==1, v[irow+1]=-1, v[irow+1]=0);
    for(k=2, n, v[irow+k]=(-1)^k*k*(k-2)^(n-2)*binomial(n,k); ); );
    return(v); }
    a=seq(100);