A244142 Triangle read by rows: coefficients T(n,k) of a binomial decomposition of n as Sum(k=0..n)T(n,k)*binomial(n,k).
0, 0, 1, 0, 0, 2, 0, 0, 6, -15, 0, 0, 18, -75, 196, 0, 0, 54, -375, 1372, -3645, 0, 0, 162, -1875, 9604, -32805, 87846, 0, 0, 486, -9375, 67228, -295245, 966306, -2599051, 0, 0, 1458, -46875, 470596, -2657205, 10629366, -33787663, 91125000
Offset: 0
Examples
The first rows of the triangle are: 0, 0, 1, 0, 0, 2, 0, 0, 6, -15, 0, 0, 18, -75, 196, 0, 0, 54, -375, 1372, -3645
Links
- Stanislav Sykora, Table of n, a(n) for rows 0..100
- S. Sykora, An Abel's Identity and its Corollaries, Stan's Library, Volume V, 2014, DOI 10.3247/SL5Math14.004. See eq.(21), with a=1, b=2.
Crossrefs
Programs
-
PARI
seq(nmax)={my(v, n, k, irow); v = vector((nmax+1)*(nmax+2)/2); v[1]=0; for(n=1, nmax, irow=1+n*(n+1)/2; v[irow]=0; if(n==1, v[irow+1]=1, v[irow+1]=0); for(k=2,n,v[irow+k]=(-1)^k*k*(2*k-1)^(n-2); ); ); return(v); } a=seq(100);
Comments