cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244143 Triangle read by rows: terms T(n,k) of a binomial decomposition of n as Sum(k=0..n)T(n,k).

Original entry on oeis.org

0, 0, 1, 0, 0, 2, 0, 0, 18, -15, 0, 0, 108, -300, 196, 0, 0, 540, -3750, 6860, -3645, 0, 0, 2430, -37500, 144060, -196830, 87846, 0, 0, 10206, -328125, 2352980, -6200145, 6764142, -2599051, 0, 0, 40824, -2625000, 32941720, -148803480, 297622248, -270301304, 91125000
Offset: 0

Views

Author

Stanislav Sykora, Jun 23 2014

Keywords

Comments

T(n,k)=(-1)^k*k*(2*k-1)^(n-2)*binomial(n,k) for k>1, while T(n,0)=0 and T(1,1)=0^(n-1) by convention.

Examples

			First rows of the triangle, all summing up to n:
0,
0, 1,
0, 0, 2,
0, 0, 18, -15,
0, 0, 108, -300, 196,
0, 0, 540, -3750, 6860, -3645,
		

Crossrefs

Programs

  • PARI
    seq(nmax)={my(v, n, k, irow);
    v = vector((nmax+1)*(nmax+2)/2); v[1]=0;
    for(n=1, nmax, irow=1+n*(n+1)/2;
      v[irow]=0; if(n==1, v[irow+1]=1, v[irow+1]=0);
    for(k=2, n, v[irow+k]=(-1)^k*k*(2*k-1)^(n-2)*binomial(n,k); ); );
    return(v); }
    a=seq(100);