A244143 Triangle read by rows: terms T(n,k) of a binomial decomposition of n as Sum(k=0..n)T(n,k).
0, 0, 1, 0, 0, 2, 0, 0, 18, -15, 0, 0, 108, -300, 196, 0, 0, 540, -3750, 6860, -3645, 0, 0, 2430, -37500, 144060, -196830, 87846, 0, 0, 10206, -328125, 2352980, -6200145, 6764142, -2599051, 0, 0, 40824, -2625000, 32941720, -148803480, 297622248, -270301304, 91125000
Offset: 0
Examples
First rows of the triangle, all summing up to n: 0, 0, 1, 0, 0, 2, 0, 0, 18, -15, 0, 0, 108, -300, 196, 0, 0, 540, -3750, 6860, -3645,
Links
- Stanislav Sykora, Table of n, a(n) for rows 0..100
- S. Sykora, An Abel's Identity and its Corollaries, Stan's Library, Volume V, 2014, DOI 10.3247/SL5Math14.004. See eq.(21), with a=1, b=2.
Crossrefs
Programs
-
PARI
seq(nmax)={my(v, n, k, irow); v = vector((nmax+1)*(nmax+2)/2); v[1]=0; for(n=1, nmax, irow=1+n*(n+1)/2; v[irow]=0; if(n==1, v[irow+1]=1, v[irow+1]=0); for(k=2, n, v[irow+k]=(-1)^k*k*(2*k-1)^(n-2)*binomial(n,k); ); ); return(v); } a=seq(100);
Comments