This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244148 #26 Jun 29 2014 00:10:54 %S A244148 1,2,72,115200,13276569600,165253252792320000, %T A244148 312379127174190543667200000,120053472861445542607502662277529600000, %U A244148 12098873398276702490569569159619238449643520000000000,400639807706466477973460949403651522366500906696560470917120000000000 %N A244148 The number of ways one can assign values to n arrays a_{1},...,a_{n} of increasing size (size of a_{1} is 1, size of a_{2} is 2, ..., size of a_{n} is n) using the numbers 1, ..., n*(n+1)/2, distinctly, such that the positions of array a_{i} can only be assigned values in the interval ((n+1)-i),... , (n*(n+1)/2-(n-i)). %C A244148 This sequence provides an upper bound for the following sequence: the number of ways one can assign values to n arrays a_{1},...,a_{n} of increasing size (size of a_{1} is 1, size of a_{2} is 2, ..., size of a_{n} is n) using the numbers 1, ..., n*(n+1)/2, distinctly, such that for the j^th position of array a_{i} (a_{i}(j)) one of the follow holds, a_{i+1}(j+1) < a_{i}(j) < a_{i+1}(j) or a_{i+1}(j) < a_{i}(j) < a_{i+1}(j+1). Currently, there is no formula known for enumerating this sequence. %H A244148 David M. Cerna, <a href="/A244148/b244148.txt">Table of n, a(n) for n = 1..50</a> %H A244148 David M. Cerna, <a href="https://www.logic.at/sites/default/files/UP_0.pdf">Proof of enumeration formula </a> %H A244148 Clark Kimberling, Unsolved Problems and Rewards: <a href="http://faculty.evansville.edu/ck6/integer/unsolved.html"> Number 18 </a> %F A244148 a(n) = Prod_{k=1..n} (k!* binomial((n^2 - 3*n + 5*k - k^2)/2 , k)). %o A244148 (PARI) a(n)=prod(k=1,n,k!* binomial((n^2 - 3*n + 5*k - k^2)/2 , k)); \\ _Joerg Arndt_, Jun 22 2014 %K A244148 easy,nonn %O A244148 1,2 %A A244148 _David M. Cerna_, Jun 21 2014