This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244154 #20 Feb 27 2021 21:32:21 %S A244154 1,2,3,5,4,8,13,14,6,11,18,23,25,38,63,41,7,17,28,32,39,53,88,68,61, %T A244154 74,123,113,172,188,313,122,9,20,33,50,46,83,138,95,72,116,193,158, %U A244154 270,263,438,203,85,182,303,221,424,368,613,338,666,515,858,563,1201,938,1563,365,10,26,43,59,60 %N A244154 Permutation of natural numbers: a(0) = 1, a(1) = 2, a(2n) = A254049(a(n)), a(2n+1) = 3*a(n)-1; composition of A048673 and A005940. %C A244154 Note the indexing: the domain starts from 0, while the range excludes zero. %C A244154 From _Antti Karttunen_, May 30 2017: (Start) %C A244154 This sequence can be represented as a binary tree. Each left hand child is obtained by applying A254049(n) when the parent contains n, and each right hand child is obtained by applying A016789(n-1) (i.e., multiply by 3, subtract one) to the parent's contents: %C A244154 1 %C A244154 | %C A244154 ...................2................... %C A244154 3 5 %C A244154 4......../ \........8 13......../ \........14 %C A244154 / \ / \ / \ / \ %C A244154 / \ / \ / \ / \ %C A244154 / \ / \ / \ / \ %C A244154 6 11 18 23 25 38 63 41 %C A244154 7 17 28 32 39 53 88 68 61 74 123 113 172 188 313 122 %C A244154 etc. %C A244154 This is a mirror image of the tree depicted in A245612. %C A244154 (End) %H A244154 Antti Karttunen, <a href="/A244154/b244154.txt">Table of n, a(n) for n = 0..8192</a> %H A244154 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %F A244154 a(n) = A048673(A005940(n+1)). %F A244154 From _Antti Karttunen_, May 30 2017: (Start) %F A244154 a(0) = 1, a(1) = 2, a(2n) = A254049(a(n)), a(2n+1) = 3*a(n)-1. %F A244154 a(n) = A245612(A054429(n)). %F A244154 (End) %o A244154 (Scheme) %o A244154 (define (A244154 n) (A048673 (A005940 (+ 1 n)))) %o A244154 ;; Implementing a new recurrence, with memoization-macro definec: %o A244154 (definec (A244154 n) (cond ((<= n 1) (+ 1 n)) ((even? n) (A254049 (A244154 (/ n 2)))) (else (+ -1 (* 3 (A244154 (/ (- n 1) 2))))))) ;; _Antti Karttunen_, May 30 2017 %Y A244154 Inverse: A244153. %Y A244154 Cf. A005940, A048673, A054429, A243065-A243066, A243505-A243506, A245608, A245610, A245612, A016789, A254049, A285712, A285714, A286613. %K A244154 nonn,tabf %O A244154 0,2 %A A244154 _Antti Karttunen_, Jun 27 2014