cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244174 Number of compositions of 3n in which the minimal multiplicity of parts equals n.

This page as a plain text file.
%I A244174 #25 Sep 05 2023 20:35:57
%S A244174 1,3,7,21,71,253,925,3433,12871,48621,184757,705433,2704157,10400601,
%T A244174 40116601,155117521,601080391,2333606221,9075135301,35345263801,
%U A244174 137846528821,538257874441,2104098963721,8233430727601,32247603683101,126410606437753,495918532948105
%N A244174 Number of compositions of 3n in which the minimal multiplicity of parts equals n.
%H A244174 Alois P. Heinz, <a href="/A244174/b244174.txt">Table of n, a(n) for n = 0..1000</a>
%F A244174 a(n) = A242451(3n,n).
%F A244174 Recurrence: see Maple program.
%F A244174 For n>0, a(n) = 1 + C(2n,n) = 1 + A000984(n). - _Vaclav Kotesovec_, Jun 21 2014
%F A244174 G.f.: 1/(sqrt(1-4*x)) + x/(1-x). - _Alois P. Heinz_, Jun 22 2014
%F A244174 a(n) = A245732(2n,n). - _Alois P. Heinz_, Jul 30 2014
%F A244174 a(n) = A065567(2n,n) for n>=1. - _Alois P. Heinz_, Sep 05 2023
%e A244174 a(2) = 7: [1,1,2,2], [1,2,1,2], [1,2,2,1], [2,1,1,2], [2,1,2,1], [2,2,1,1], [3,3].
%p A244174 a:= proc(n) option remember;
%p A244174       `if`(n<3, 2^(n+1)-1, ((15*n^2-31*n+12) *a(n-1)
%p A244174        -2*(3*n-2)*(2*n-3) *a(n-2)) / ((3*n-5)*n))
%p A244174     end:
%p A244174 seq(a(n), n=0..30);
%t A244174 a[n_] := a[n] = If[n < 3, 2^(n+1) - 1, ((15*n^2 - 31*n + 12)*a[n-1] - 2*(3*n - 2)*(2*n - 3)*a[n-2])/((3*n - 5)*n)]; Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Nov 07 2014, after _Alois P. Heinz_ *)
%o A244174 (Sage)
%o A244174 A244174 = lambda m: SetPartitions(2*m,[2*m]).cardinality()+2*SetPartitions(2*m,[m,m]).cardinality()
%o A244174 [1] + [A244174(m) for m in (1..26)] # _Peter Luschny_, Aug 02 2015
%Y A244174 Cf. A000984, A007318, A065567, A242451, A245732.
%K A244174 nonn
%O A244174 0,2
%A A244174 _Alois P. Heinz_, Jun 21 2014