This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A244192 #30 May 22 2025 10:21:39 %S A244192 0,0,0,97,71,91,77,61,47,47,19,27,37 %N A244192 a(n) = most common 2-digit ending for a prime < 10^n, or 0 if there is a tie. %C A244192 a(3) = 0 because '83' and '57' both appear 6 times in the endings of primes < 1000. %C A244192 a(4) = 0 because '19' and '23' both appear 35 times in the endings of primes < 10000. %e A244192 For all primes < 100000 (10^5), the most common 2-digit ending is 97. Thus a(5) = 97. %o A244192 (Python) %o A244192 import sympy %o A244192 from sympy import isprime %o A244192 def prend(d,n): %o A244192 lst = [] %o A244192 for k in range(10**n): %o A244192 if isprime(k): %o A244192 lst.append((k%10**d)) %o A244192 new = 0 %o A244192 newlst = [] %o A244192 for i in range(10**(d-1),10**d): %o A244192 new = lst.count(i) %o A244192 newlst.append(new) %o A244192 newlst1 = newlst.copy() %o A244192 a = max(newlst1) %o A244192 newlst1[newlst1.index(a)] = 0 %o A244192 b = max(newlst1) %o A244192 if a == b: %o A244192 return 0 %o A244192 else: %o A244192 return newlst.index(max(a,b)) + 10**(d-1) %o A244192 n = 3 %o A244192 while n < 10: %o A244192 print(prend(2,n),end=', ') %o A244192 n += 1 %Y A244192 Cf. A244191, A244267. %K A244192 nonn,base,hard,more %O A244192 2,4 %A A244192 _Derek Orr_, Jun 22 2014 %E A244192 a(9)-a(12) from _Hiroaki Yamanouchi_, Jul 11 2014 %E A244192 a(13)-a(14) from _Giovanni Resta_, Oct 23 2018