A244251 Numbers k such that if m = (sum of the reverses of the aliquot parts of k) then k = (sum of the reverses of the aliquot parts of m).
6, 98, 145, 244, 285, 133857
Offset: 1
Examples
Aliquot parts of 98 are 1, 2, 7, 14, 49 and the sum of their reverses is 1 + 2 + 7 + 41 + 94 = 145. Aliquot parts of 145 are 1, 5, 29 and the sum of their reverses is 1 + 5 + 92 = 98.
Crossrefs
Cf. A072228.
Programs
-
Maple
with(numtheory): T:=proc(w) local x,y,z; x:=0; y:=w; for z from 1 to ilog10(w)+1 do x:=10*x+(y mod 10); y:=trunc(y/10); od; x; end: P:=proc(q) local a,b,k,n; for n from 1 to q do a:=sort([op(divisors(n))]); b:=add(T(a[k]),k=1..nops(a)-1); a:=sort([op(divisors(b))]); b:=add(T(a[k]),k=1..nops(a)-1); if b=n then print(n); fi; od; end: P(10^12);
Comments