cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A271948 Decimal expansion of a constant related to the variance of the number of vertices of the largest tree associated with a random mapping on n symbols.

Original entry on oeis.org

0, 4, 9, 4, 6, 9, 8, 5, 2, 2, 7, 9, 2, 2, 8, 0, 7, 5, 3, 3, 3, 4, 8, 5, 4, 6, 4, 0, 5, 6, 2, 5, 3, 8, 3, 6, 6, 0, 3, 7, 2, 5, 1, 0, 7, 6, 7, 0, 0, 2, 8, 0, 1, 3, 2, 9, 5, 3, 1, 5, 7, 8, 1, 0, 3, 9, 0, 3, 3, 3, 4, 9, 4, 3, 0, 4, 2, 4, 0, 2, 9, 8, 6, 9, 7, 0, 1, 2, 0, 1, 9, 5, 8, 5, 1, 3, 4
Offset: 0

Views

Author

Jean-François Alcover, Apr 20 2016

Keywords

Examples

			0.049469852279228075333485464056253836603725107670028013295315781039...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.4.2 Random Mapping Statistics, p. 289.

Crossrefs

Programs

  • Mathematica
    digits = 96; F[x_] := 1 - Exp[-x]/Sqrt[Pi*x] - Erf[Sqrt[x]]; Clear[f, g];
    f[m_] := f[m] = 2 NIntegrate[(1 - (1 - F[x])^-1), {x, 0, m}, WorkingPrecision -> digits + 10]; f[m = 100]; f[m = 2 m]; Print["m = ", m]; While[RealDigits[f[m], 10, digits + 5][[1]] != RealDigits[f[m/2], 10, digits + 5][[1]], m = 2 m; Print["m = ", m]];
    g[m_] := g[m] = (8/3) NIntegrate[(1 - (1 - F[x])^-1)*x, {x, 0, m}, WorkingPrecision -> digits + 10]; g[m = 100]; g[m = 2 m]; Print["m = ", m]; While[RealDigits[g[m], 10, digits + 5][[1]] != RealDigits[g[m/2], 10, digits + 5][[1]], m = 2 m; Print["m = ", m]];
    Join[{0}, RealDigits[g[m] - f[m]^2, 10, digits][[1]]]

A244261 Decimal expansion of c = 2.4149..., a random mapping statistics constant such that the asymptotic expectation of the maximum rho length (graph diameter) in a random n-mapping is c*sqrt(n).

Original entry on oeis.org

2, 4, 1, 4, 9, 0, 1, 0, 2, 3, 7, 1, 7, 6, 1, 6, 2, 4, 1, 1
Offset: 1

Views

Author

Jean-François Alcover, Jun 24 2014

Keywords

Examples

			2.4149010237176162411...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.4.2 Random Mapping Statistics, p. 288.
  • P. Flajolet and A. M. Odlyzko, Random Mapping Statistics, Advances in Cryptology - EUROCRYPT '89, J.-J. Quisquater and J. Vandewalle (eds.), Lecture Notes in Computer Science, Springer Verlag, 1990, pp. 329-354.

Crossrefs

Programs

  • Maple
    evalf(sqrt(Pi/2)*Int(1 - exp(Ei(-x) - Int((exp(-y)/y)*(1 - exp(-2*(y/(exp(x - y) - 1)))), y=0..x)), x=0..infinity)); # Vaclav Kotesovec, Aug 12 2019
  • Mathematica
    digits = 20; m0 = 100; dm = 10; I0[x_?NumericQ] := NIntegrate[(Exp[-y]/y)*(1 - Exp[-2*(y/(Exp[x - y] - 1))]), {y, 0, x}, WorkingPrecision -> digits+5]; Clear[f]; f[m_] := f[m] = Sqrt[Pi/2]* NIntegrate[1 - Exp[ExpIntegralEi[-x] - I0[x]], {x, 0, m}, WorkingPrecision -> digits+5]; f[m0]; f[m = m0 + dm]; While[RealDigits[f[m], 10, digits+5] != RealDigits[f[m - dm], 10, digits+5], Print["m = ", m]; m = m + dm]; RealDigits[f[m], 10, digits] // First

Formula

I(x) = integral_(0..x) (exp(-y)/y)*(1 - exp(-2*(y/(exp(x - y) - 1)))) dy,
c = sqrt(Pi/2)*integral_(0..infinity) 1 - exp(Ei(-x) - I(x)) dx, where Ei is the exponential integral function.

A271871 Decimal expansion of a constant related to the expected number of vertices of the largest tree associated with a random mapping on n symbols.

Original entry on oeis.org

4, 8, 3, 4, 9, 8, 3, 4, 7, 1, 5, 4, 4, 2, 5, 5, 0, 0, 9, 2, 4, 0, 2, 6, 3, 6, 0, 8, 5, 0, 7, 5, 6, 1, 9, 4, 4, 4, 9, 2, 4, 6, 6, 7, 9, 5, 4, 1, 3, 3, 8, 1, 0, 4, 3, 2, 9, 2, 6, 4, 9, 4, 1, 5, 5, 2, 4, 7, 0, 9, 3, 3, 5, 1, 1, 4, 0, 3, 2, 9, 5, 9, 9, 2, 3, 7, 3, 2, 3, 1, 9, 6, 0, 8, 7, 7, 0, 1, 8, 9, 4, 8, 8
Offset: 0

Views

Author

Jean-François Alcover, Apr 20 2016

Keywords

Examples

			0.48349834715442550092402636085075619444924667954133810432926494155247...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.4.2 Random Mapping Statistics, p. 289.

Crossrefs

Programs

  • Mathematica
    digits = 98; F[x_] := 1 - Exp[-x]/Sqrt[Pi*x] - Erf[Sqrt[x]]; Clear[f]; f[m_] := f[m] = 2 NIntegrate[1-(1-F[x])^-1, {x, 0, m}, WorkingPrecision -> digits+10]; f[m = 100]; f[m = 2 m]; Print["m = ", m]; While[ RealDigits[ f[m], 10, digits + 5][[1]] != RealDigits[f[m/2], 10, digits + 5][[1]], m = 2 m; Print["m = ", m]]; RealDigits[f[m/2], 10, digits + 5][[1]]
Showing 1-3 of 3 results.